Process Performance and Microbial Communities in Anaerobic Co-digestion of Sewage Sludge and Food Waste with a Lower Range of Carbon/Nitrogen Ratio

Author(s):  
Yi Zheng ◽  
Pan Wang ◽  
Xinyu Yang ◽  
Peiru Lin ◽  
Yongjing Wang ◽  
...  
Italus Hortus ◽  
2021 ◽  
Vol 28 (1) ◽  
pp. 74
Author(s):  
Nissaf Karbout ◽  
Houda Beser ◽  
Latifa Dhaouidi ◽  
Mohamad Wahba ◽  
Mohamed Moussa

Although the importance of organic amendments on arid soils of semi-arid and arid lands in improving long-term soil fertility, the excessive use of these amendments may induce the mineralization of the soil’s native organic components. Thus, this study focused on the examination of the impact of the use of three different amendments, sewage sludge, compost, and horse manure on nitrogen soil dynamics as well on the physico-chemical characteristics (soil texture, nitrogen cycle, and carbon concentration) and plant characteristics (morphology and production). In this context, the present work discusses one of the major issues challenging sustainable agriculture development related to increasing land degradation, soil salinization, and fertility loss. The three amendments were applied on the soil collected at the Institute of Arid Regions of Gabes. The findings of these experimental trials indicated that compost seems to be the most valuable organic amendment that may be used for an adequate supply of nitrogen and optimal benefits for plant growth. The highest mineral nitrogen content was found in the treatment with sludge. The manure-based treatment had the highest carbon/nitrogen ratio (C/N=25). The effects of the amendments were well reflected in the growth and production of bean plants after one year from the amendment. An increase in biomass was observed in the amended pots. The highest increase in pods biomass was obtained in the pots amended with sewage sludge and vegetable compost followed by household manure treatment


2019 ◽  
Vol 11 (7) ◽  
pp. 2139 ◽  
Author(s):  
Lirio María Reyna-Gómez ◽  
Carlos Eduardo Molina-Guerrero ◽  
Juan Manuel Alfaro ◽  
Santiago Iván Suárez Vázquez ◽  
Armando Robledo-Olivo ◽  
...  

This paper studies the use of fruit peel biomass and waste sludge from municipal wastewater treatment plants in the metropolitan area of Monterrey, Mexico as an alternative way of generating renewable energy. Using a Plackett–Burman experimental design, we investigated the effects of temperature, inoculum source, and the C/N (Carbon/Nitrogen) ratio on dark fermentation (DF). The results indicate that it is possible to produce hydrogen using fruit peels codigested with sewage sludge. By adjusting the C/N ratio in response to the physicochemical characterization of the substrates, it was revealed that the quantities of carbohydrates and nitrogen were sufficient for the occurrence of the fermentation process with biogas production greater than 2221 ± 5.8 mL L−1Reactor and hydrogen selectivity of 23% (366 ± 1 mL H2·L−1Reactor) at the central point. The kinetic parameters (Hmax= 86.6 mL·L−1, Rm = 2.6 mL L−1 h−1, and λ = 1.95 h) were calculated using the modified Gompertz model. The quantification of soluble metabolites, such as acetic acid (3600 mg L−1) and ethyl alcohol (3.4 ± 0.25% v/v), confirmed the presence of acetogenesis in the generation of hydrogen.


2020 ◽  
Vol 316 ◽  
pp. 123946 ◽  
Author(s):  
Ana B. Siles-Castellano ◽  
María J. López ◽  
Macarena M. Jurado ◽  
Francisca Suárez-Estrella ◽  
Juan A. López-González ◽  
...  

2019 ◽  
Author(s):  
Zhouzhou Fan ◽  
Zhenzhen Jia ◽  
Yongshuang Li ◽  
Peng Lian ◽  
Xiawei Peng

AbstractKnowledge about the microbial communities in composting has advanced, but definitive knowledge concerning the application of actinomycetal communities in garden waste composting is still lacking. In this study, we compared the effects of amending compost with mixed agent M1 (five high-degradability strains) and other agents on the physicochemical indices and microbial community succession. The results showed that Pile A (only applying M1), exhibited a pH closer to neutral, the complete degradation of organic matter, and the highest remaining levels of nitrogen, phosphorus, and potassium. The seed germination rate, root length, and seed germination index values were significantly higher in piles amended with M1 and/or commercially available agents than in piles without exogenous microbial agents. Analyzing the microbial communities, these treatments were dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes during composting. The amount of Streptomyces was negatively correlated with the carbon/nitrogen ratio and positively correlated with total phosphorus and total potassium. Adding M1 increased microbial diversity, and the dominant microbial communities at the end of composting were similar to those found in the commercial microbial inoculum. Overall, agent M1 can shorten the composting process and increase the extent of degradation. This research provides additional insights into the potential function of Actinomycetes in compost ecology.


2019 ◽  
Vol 79 (10) ◽  
pp. 1956-1965 ◽  
Author(s):  
Esteban Orellana ◽  
Carol Davies-Sala ◽  
Leandro D. Guerrero ◽  
Ignacio Vardé ◽  
Melisa Altina ◽  
...  

Abstract Addition of food waste (FW) as a co-substrate in anaerobic digesters of wastewater treatment plants is a desirable strategy towards achievement of the potential of wastewater treatment plants to become energy-neutral, diverting at the same time organic waste from landfills. Because substrate type is a driver of variations in phylogenetic structure of digester microbiomes, it is critical to understand how microbial communities respond to changes in substrate composition and concentration. In this work, high throughput sequencing was used to monitor the dynamics of microbiome changes in four parallel laboratory-scale anaerobic digesters treating sewage sludge during acclimation to an increasing amount of food waste. A co-occurrence network was constructed using data from 49 metagenomes sampled over the 161 days of the digesters' operation. More than half of the nodes in the network were clustered in two major modules, i.e. groups of highly interconnected taxa that had much fewer connections with taxa outside the group. The dynamics of co-occurrence networks evidenced shifts that occurred within microbial communities due to the addition of food waste in the co-digestion process. A diverse and reproducible group of hydrolytic and fermentative bacteria, syntrophic bacteria and methanogenic archaea appeared to grow in a concerted fashion to allow stable performance of anaerobic co-digestion at high FW.


2013 ◽  
Vol 8 (2) ◽  
pp. 159-178 ◽  

Atrazine, a chlorinated s-triazine group of herbicide is one of the most widely used pesticides in the World. Due to its extensive use, long half-life and various toxic properties, it has very high environmental significance. Up to 22 mg l-1 of atrazine was found in ground water whereas permissible limit of atrazine is in ppb level in drinking water. As per Indian standard there should not be any pesticide present in drinking water. Among many other treatment processes available, Incineration, adsorption, chemical treatment, phytoremediation and biodegradation are the most commonly used ones. Biological degradation of atrazine depends upon various factors like the operating environment, external carbon and nitrogen sources, carbon/ nitrogen ratio (C/N), water content and the bacterial strain. Although, general atrazine degradation pathways are available, the specific pathways in specific conditions are not yet clearly defined. In this paper extensive review has been made on the occurrence of atrazine in surface and ground water bodies, probable sources and causes of its occurrence in water environment, the toxicity of atrazine on various living organisms and its removal by biological processes.


Sign in / Sign up

Export Citation Format

Share Document