scholarly journals Numerical simulation of fluid field and in vitro three-dimensional fabrication of tissue-engineered bones in a rotating bioreactor and in vivo implantation for repairing segmental bone defects

2012 ◽  
Vol 18 (2) ◽  
pp. 193-201 ◽  
Author(s):  
Kedong Song ◽  
Hai Wang ◽  
Bowen Zhang ◽  
Mayasari Lim ◽  
YingChao Liu ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 203 ◽  
Author(s):  
Chun-Hao Tsai ◽  
Chih-Hung Hung ◽  
Che-Nan Kuo ◽  
Cheng-Yu Chen ◽  
Yu-Ning Peng ◽  
...  

Recently, cases of bone defects have been increasing incrementally. Thus, repair or replacement of bone defects is gradually becoming a huge problem for orthopaedic surgeons. Three-dimensional (3D) scaffolds have since emerged as a potential candidate for bone replacement, of which titanium (Ti) alloys are one of the most promising candidates among the metal alloys due to their low cytotoxicity and mechanical properties. However, bioactivity remains a problem for metal alloys, which can be enhanced using simple immersion techniques to coat bioactive compounds onto the surface of Ti–6Al–4V scaffolds. In our study, we fabricated magnesium-calcium silicate (Mg–CS) and chitosan (CH) compounds onto Ti–6Al–4V scaffolds. Characterization of these surface-modified scaffolds involved an assessment of physicochemical properties as well as mechanical testing. Adhesion, proliferation, and growth of human Wharton’s Jelly mesenchymal stem cells (WJMSCs) were assessed in vitro. In addition, the cell attachment morphology was examined using scanning electron microscopy to assess adhesion qualities. Osteogenic and mineralization assays were conducted to assess osteogenic expression. In conclusion, the Mg–CS/CH coated Ti–6Al–4V scaffolds were able to exhibit and retain pore sizes and their original morphologies and architectures, which significantly affected subsequent hard tissue regeneration. In addition, the surface was shown to be hydrophilic after modification and showed mechanical strength comparable to natural bone. Not only were our modified scaffolds able to match the mechanical properties of natural bone, it was also found that such modifications enhanced cellular behavior such as adhesion, proliferation, and differentiation, which led to enhanced osteogenesis and mineralization downstream. In vivo results indicated that Mg–CS/CH coated Ti–6Al–4V enhances the bone regeneration and ingrowth at the critical size bone defects of rabbits. These results indicated that the proposed Mg–CS/CH coated Ti–6Al–4V scaffolds exhibited a favorable, inducive micro-environment that could serve as a promising modification for future bone tissue engineering scaffolds.


Author(s):  
Fei Xing ◽  
Lang Li ◽  
Jiachen Sun ◽  
Guoming Liu ◽  
Xin Duan ◽  
...  

Abstract Background Segmental bone defects caused by trauma, tumors, or infection are a serious challenge for orthopedists in the world. Recent developments in tissue engineering have provided a new treatment for segmental bone defects. Urine-derived stem cells (USCs) can be obtained noninvasively and might be a new kind of seed cells used in bone tissue regeneration. Therefore, the first aim of the present study was to investigate the biological characteristics of USCs. The second aim of the present study was to study the osteogenic effect of surface mineralized biphasic calcium phosphate ceramics (BCPs) loaded with USCs in vitro and in vivo. Methods We isolated USCs from the urine of healthy adult donors and evaluated the biological characteristics of USCs in vitro. We mineralized the surface of BCPs by simulated body fluid (SBF). Cell adhesion and proliferation of USCs on the surface mineralized BCPs were evaluated. Osteogenic proteins and genes of USCs on the surface mineralized BCPs were texted by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) assay. Critical-sized segmental bone defects model in New Zealand white rabbits were established and randomly divided into 4 groups (surface mineralized BCPs loaded with USCs, BCPs loaded with USCs, surface mineralized BCPs, and BCPs) based on the implant they received. The therapeutic efficacy of the scaffolds in a large bone defect at post-implantation was evaluated by imaging and histological examination. Results USCs isolated in our study expressed stem cell-specific phenotypes and had a stable proliferative capacity and multipotential differentiation capability. Surface mineralized BCPs promoted osteogenic proteins and genes expression of USCs without affecting the proliferation of USCs. After 10 weeks, the amount of new bone formation was the highest in the group of surface mineralized BCPs loaded with USCs. Conclusion USCs, from non-invasive sources, have good application prospects in the field of bone tissue engineering. Surface mineralized BCPs can significantly enhance osteogenic potential of USCs without changing biological characteristics of BCPs. Surface mineralized BCPs loaded with USCs are effective in repairing of critical-sized segmental bone defects in rabbits.


2020 ◽  
Vol 35 (4-5) ◽  
pp. 544-552 ◽  
Author(s):  
Wenwen Liu ◽  
Di Yang ◽  
Xinghui Wei ◽  
Shuo Guo ◽  
Ning Wang ◽  
...  

Porous titanium scaffolds can provide sufficient mechanical support and bone growth space for large segmental bone defect repair. However, they fail to restore the physiological environment of bone tissue. Barium titanate (BaTiO3) is considered a smart material that can produce an electric field in response to dynamic force. Low-intensity pulsed ultrasound stimulation (LIPUS), as a kind of micromechanical wave, can not only promote bone repair but also induce BaTiO3 to generate an electric field. In our studies, BaTiO3 was coated on porous Ti6Al4V and LIPUS was externally applied to observe the influence of the piezoelectric effect on the repair of large bone defects in vitro and in vivo. The results show that the piezoelectric effect can effectively promote the osteogenic differentiation of bone marrow stromal cells (BMSCs) in vitro as well as bone formation and growth into implants in vivo. This study provides an optional alternative to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and osseointegration for the repair of large bone defects.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Marcello Pilia ◽  
Teja Guda ◽  
Mark Appleford

The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs) is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review ofin vivomodels used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Alice Roffi ◽  
Gopal Shankar Krishnakumar ◽  
Natalia Gostynska ◽  
Elizaveta Kon ◽  
Christian Candrian ◽  
...  

Long bone defects represent a clinical challenge. Bone tissue engineering (BTE) has been developed to overcome problems associated with conventional methods. The aim of this study was to assess the BTE strategies available in preclinical and clinical settings and the current evidence supporting this approach. A systematic literature screening was performed on PubMed database, searching for both preclinical (only on large animals) and clinical studies. The following string was used: “(Scaffold OR Implant) AND (Long bone defect OR segmental bone defect OR large bone defect OR bone loss defect).” The search retrieved a total of 1573 articles: 51 preclinical and 4 clinical studies were included. The great amount of preclinical papers published over the past few years showed promising findings in terms of radiological and histological evidence. Unfortunately, this in vivo situation is not reflected by a corresponding clinical impact, with few published papers, highly heterogeneous and with small patient populations. Several aspects should be further investigated to translate positive preclinical findings into clinical protocols: the identification of the best biomaterial, with both biological and biomechanical suitable properties, and the selection of the best choice between cells, GFs, or their combination through standardized models to be validated by randomized trials.


Sign in / Sign up

Export Citation Format

Share Document