In-vitro and in-vivo electrical characteristics of a penetrating microelectrode array for optic nerve electrical stimulation

2011 ◽  
Vol 16 (5) ◽  
pp. 614-619 ◽  
Author(s):  
Xiao-hong Sui ◽  
Yi-bin Shao ◽  
Li-ming Li ◽  
Xin-yu Chai ◽  
Qiu-shi Ren
2012 ◽  
Vol 116 (3) ◽  
pp. 498-512 ◽  
Author(s):  
Bhagat Singh ◽  
Qing-Gui Xu ◽  
Colin K. Franz ◽  
Rumi Zhang ◽  
Colin Dalton ◽  
...  

Object Regeneration of peripheral nerves is remarkably restrained across transection injuries, limiting recovery of function. Strategies to reverse this common and unfortunate outcome are limited. Remarkably, however, new evidence suggests that a brief extracellular electrical stimulation (ES), delivered at the time of injury, improves the regrowth of motor and sensory axons. Methods In this work, the authors explored and tested this ES paradigm, which was applied proximal to transected sciatic nerves in mice, and identified several novel and compelling impacts of the approach. Using thy-1 yellow fluorescent protein mice with fluorescent axons that allow serial in vivo tracking of regeneration, the morphological, electrophysiological, and behavioral indices of nerve regrowth were measured. Results The authors show that ES is associated with a 30%–50% improvement in several indices of regeneration: regrowth of axons and their partnered Schwann cells across transection sites, maturation of regenerated fibers in gaps spanning transection zones, and entry of axons into their muscle and cutaneous target zones. In parallel studies, the authors analyzed adult sensory neurons and their response to extracellular ES while plated on a novel microelectrode array construct designed to deliver the identical ES paradigm used in vivo. The ES accelerated neurite outgrowth, supporting the concept of a neuron-autonomous mechanism of action. Conclusions Taken together, these results support a robust role for brief ES following peripheral nerve injuries in promoting regeneration. Electrical stimulation has a wider repertoire of impact than previously recognized, and its impact in vitro supports the hypothesis that a neuron-specific reprogrammed injury response is recruited by the ES protocol.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fatemeh Sanie-Jahromi ◽  
Ali Azizi ◽  
Sahar Shariat ◽  
Mohammadkarim Johari

Tissue engineering is biomedical engineering that uses suitable biochemical and physicochemical factors to assemble functional constructs that restore or improve damaged tissues. Recently, cell therapies as a subset of tissue engineering have been very promising in the treatment of ocular diseases. One of the most important biophysical factors to make this happen is noninvasive electrical stimulation (ES) to target ocular cells that may preserve vision in multiple retinal and optic nerve diseases. The science of cellular and biophysical interactions is very exciting in regenerative medicine now. Although the exact effect of ES on cells is unknown, multiple mechanisms are considered to underlie the effects of ES, including increased production of neurotrophic agents, improved cell migration, and inhibition of proinflammatory cytokines and cellular apoptosis. In this review, we highlighted the effects of ES on ocular cells, especially on the corneal, retinal, and optic nerve cells. Initially, we summarized the current literature on the in vitro and in vivo effects of ES on ocular cells and then we provided the clinical studies describing the effect of ES on ocular complications. For each area, we used some of the most impactful articles to show the important concepts and results that advanced the state of these interactions. We conclude with reflections on emerging new areas and perspectives for future development in this field.


2018 ◽  
Vol 300 ◽  
pp. 247-258 ◽  
Author(s):  
Ioana Goganau ◽  
Beatrice Sandner ◽  
Norbert Weidner ◽  
Karim Fouad ◽  
Armin Blesch

Author(s):  
Tian Wang ◽  
Yiming Li ◽  
Miao Guo ◽  
Xue Dong ◽  
Mengyu Liao ◽  
...  

Traumatic optic neuropathy (TON) refers to optic nerve damage caused by trauma, leading to partial or complete loss of vision. The primary treatment options, such as hormonal therapy and surgery, have limited efficacy. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), a functional endogenous neuroprotective peptide, has emerged as a promising therapeutic agent. In this study, we used rat retinal ganglion cell (RGC) exosomes as nanosized vesicles for the delivery of PACAP38 loaded via the exosomal anchor peptide CP05 (EXOPACAP38). EXOPACAP38 showed greater uptake efficiency in vitro and in vivo than PACAP38. The results showed that EXOPACAP38 significantly enhanced the RGC survival rate and retinal nerve fiber layer thickness in a rat TON model. Moreover, EXOPACAP38 significantly promoted axon regeneration and optic nerve function after injury. These findings indicate that EXOPACAP38 can be used as a treatment option and may have therapeutic implications for patients with TON.


1986 ◽  
Vol 102 (2) ◽  
pp. 384-392 ◽  
Author(s):  
M Dubois-Dalcq ◽  
T Behar ◽  
L Hudson ◽  
R A Lazzarini

Oligodendrocytes, the myelin-forming cells of the central nervous system, were cultured from newborn rat brain and optic nerve to allow us to analyze whether two transmembranous myelin proteins, myelin-associated glycoprotein (MAG) and proteolipid protein (PLP), were expressed together with myelin basic protein (MBP) in defined medium with low serum and in the absence of neurons. Using double label immunofluorescence, we investigated when and where these three myelin proteins appeared in cells expressing galactocerebroside (GC), a specific marker for the oligodendrocyte membrane. We found that a proportion of oligodendrocytes derived from brain and optic nerve invariably express MBP, MAG, and PLP about a week after the emergence of GC, which occurs around birth. In brain-derived oligodendrocytes, MBP and MAG first emerge between the fifth and the seventh day after birth, followed by PLP 1 to 2 d later. All three proteins were confined to the cell body at that time, although an extensive network of GC positive processes had already developed. Each protein shows a specific cytoplasmic localization: diffuse for MBP, mostly perinuclear for MAG, and particulate for PLP. Interestingly, MAG, which may be involved in glial-axon interactions, is the first myelin protein detected in the processes at approximately 10 d after birth. MBP and PLP are only seen in these locations after 15 d. All GC-positive cells express the three myelin proteins by day 19. Simultaneously, numerous membrane and myelin whorls accumulate along the oligodendrocyte surface. The sequential emergence, cytoplasmic location, and peak of expression of these three myelin proteins in vitro follow a pattern similar to that described in vivo and, therefore, are independent of continuous neuronal influences. Such cultures provide a convenient system to study factors regulating expression of myelin proteins.


1980 ◽  
Vol 84 (3) ◽  
pp. 483-494 ◽  
Author(s):  
R Mirsky ◽  
J Winter ◽  
E R Abney ◽  
R M Pruss ◽  
J Gavrilovic ◽  
...  

We have used antibodies to identify Schwann cells and oligodendrocytes and to study the expression of myelin-specific glycolipids and proteins in these cells isolated from perinatal rats. Our findings suggest that only Schwann cells which have been induced to myelinate make detectable amounts of galactocerebroside (GC), sulfatide, myelin basic protein (BP), or the major peripheral myelin glycoprotein (P0). When rat Schwann cells were cultured, they stopped making detectable amounts of these myelin molecules, even when the cells were associated with neurites in short-term explant cultures of dorsal root ganglion. In contrast, oligodendrocytes in dissociated cell cultures of neonatal optic nerve, corpus callosum, or cerebellum continued to make GC, sulfatide and BP for many weeks, even in the absence of neurons. These findings suggest that while rat Schwann cells require a continuing signal from appropriate axons to make detectable amounts of myelin-specific glycolipids and proteins, oligodendrocytes do not. Schwann cells and oligodendrocytes also displayed very different morphologies in vitro which appeared to reflect their known differences in myelinating properties in vivo. Since these characteristic morphologies are maintained when Schwann cells and oligodendrocytes were grown together in mixed cultures and in the absence of neurons, we concluded that they are intrinsic properties of these two different myelin-forming cells.


2006 ◽  
Vol 18 (2) ◽  
pp. 129 ◽  
Author(s):  
G. Jang ◽  
M. Kim ◽  
H. J. Oh ◽  
F. Y. Heru ◽  
M. S. Hossein ◽  
...  

The present study was performed to collect in vivo matured canine oocytes for somatic cell nuclear transfer (SCNT) and to investigate the developmental competence of canine parthenogenetic and SCNT embryos as the preliminary research for producing cloned dog. The day of ovulation as described by Hase et al. (2000 J. Vet. Med. Sci. 62, 243-248) was determined by serum progesterone levels and at that time vaginal cytology was performed to assess the cornified index. In vivo-matured oocytes were recovered by retrograde flushing of the oviducts at around 48 h (n = 20) or 72 h (n = 25) after the estimated time of ovulation. Overall size of each oocyte, as well as ooplasmic diameter, zona pellucida thickness, and perivitelline space width, was determined after removing the cumulus cells by pipetting (Exp. 1). To determine activation protocols, two treatments, (1) chemical activation (10 �M Ca ionophore for 4 min, followed by incubation for 4 h with 1.9 mM 6-dimethylaminopurine) and (2) electrical stimulation (3.1?3.4 kV/cm in 0.25M mannitol solution), were evaluated to induce parthenogenetic activation of oocytes (Exp. 2). Donor cells were obtained from the primary cell culture of a canine ear skin biopsy, and SCNT was performed according to our laboratory procedures (Jang et al. 2004 Theriogenology 62, 512-521). Three voltages (1.7?2.0 kV/cm, 2.1-2.4 kV/cm, and 3.1-3.4 kV/cm) were tested for fusion. The fused couplets were subjected to chemical or electrical stimulation as in parthenogenetic activation and in vitro developmental competence was monitored (Exp. 3). As a result, more in vivo-matured canine oocytes were obtained at 72 h (92%) than at 48 h (15%) after ovulation; the 72-h occytes had progesterone concentrations of 4-8 ng/mL and a cornified index (vaginal cytology) of 83.34. The average number of oocytes recovered was 12 and sizes of ooplasmic diameter, cytoplasm, zona pellucida, and perivitelline space in in vivo canine-matured oocytes (n = 120) were 178.8 � 9.3 �m, 125.0 � 8.2 �m, 21.7 � 3.7 �m, and 12.7 � 3.5 �m, respectively. Parthenogenetically activated oocytes developed to the 16-cell and morula stages, but failed to develop to the blastocyst stage. Among the three voltages, in the highest voltage (75.2%) the number of fused couplets was increased compared to either of the other voltages (33.3% and 44.0%). Cleavage rates (60.9% vs. 58.0%) of cloned embryos were not significantly affected by method of activation. In terms of in vitro developmental competence, cloned embryos developed to the 16-cell or morula stage in vitro after electrical or chemical activation, respectively. In conclusion, in the present study we demonstrated that measurement of progesterone levels, in combination with evaluation of vaginal cytology, can be used to determine the estimated time of ovulation in bitches. In addition, we determined fusion/activation protocols that resulted in in vitro development of a portion of parthenogenetically activated and cloned embryos to the 16-cell and morula stages. This study was supported by grants from the Biogreen 21-1000520030100000.


Sign in / Sign up

Export Citation Format

Share Document