Mesh stiffness analysis of beveloid gears for the rotating vector transmission

2019 ◽  
Vol 33 (8) ◽  
pp. 3943-3953
Author(s):  
Yucheng Huang ◽  
Xuesong Du ◽  
Caichao Zhu ◽  
Gaoxiang Ni ◽  
Najeeb Ullah ◽  
...  
2012 ◽  
Vol 215-216 ◽  
pp. 917-920
Author(s):  
Rong Fan ◽  
Chao Sheng Song ◽  
Zhen Liu ◽  
Wen Ji Liu

Dynamic modeling of beveloid gears is less developed than that of spur gears, helical gears and hypoid gears because of their complicated meshing mechanism and 3-dimsional dynamic coupling. In this study, a nonlinear systematic coupled vibration model is created considering the time-varying mesh stiffness, time-varying transmission error, time-varying rotational radius and time-varying friction coefficient. Numerical integration applying the explicite Runge-Kutta formula and the implicit direct integration is used to solve the nonlinear dynamic model. Also, the dynamic characteristics of the marine gear system are investigated.


Author(s):  
Qibin Wang ◽  
Bo Zhao ◽  
Xianguang Kong ◽  
Hongbo Ma ◽  
Jiantao Chang

As a new type of transmission, the single-roller enveloping hourglass worm gear (SEHWG) is widely used in precision mechanical transmission systems. Time-varying mesh stiffness (TVMS) is one of the most important excitations, which has great influences on the dynamic characteristics of SEHWG systems. In this paper, a model for calculating the TVMS of the SEHWG is proposed, in which bending stiffness, shear stiffness, radial compression stiffness, and foundation stiffness are considered in the worm stiffness calculation. And bending stiffness, shear stiffness, and foundation stiffness are considered in the worm wheel stiffness calculation. The process of calculating the periodical TVMS of the SEHWG is also presented. Then, the TVMS of the SEHWG by the proposed method is compared with that of the finite element method for the model validation. Finally, the influences of the roller radii on TVMS are analyzed. The results show that the mesh stiffness of the TVMS has a tendency to rise first and then fall with the increasing roller radii.


2012 ◽  
Vol 229-231 ◽  
pp. 499-502 ◽  
Author(s):  
Xiu Yan Zhang ◽  
Xiao Jun Dai

The four ring-plate-type pin-cycloidal gear planetary drive is a new type of the cycloid. Use the new repair tooth profile gap mesh analysis method to Calculate the cycloid mesh stiffness. the mesh stiffness of the cycloid is solved, According to simulation results based on the ANSYS / LS-DYNA. and the results were compared with theoretical calculations, both mutual authentication. It can be use to improve the prototype program at last.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hancheng Mao ◽  
Yongguo Sun ◽  
Tiantian Xu ◽  
Guangbin Yu

The tooth surfaces of beveloid gears have different topography features due to machining methods, manufacturing accuracies, and surface wear, which will affect the contact state of the tooth surface, thereby affecting time-varying mesh stiffness between mating gear pairs. Therefore, a slice grouping method was proposed in this paper on the basis of potential energy to calculate the total meshing stiffness of beveloid gears with the surface topography. The method in this paper was verified by finite element method (FEM). Compared with the calculation results of this paper, the relative error is 5.9%, which demonstrated the feasibility and accuracy of the method in this paper. Then, the influence of parameters such as pressure angle, helix angle, pitch angle, tooth width, fractal dimension, and fractal roughness on meshing stiffness was investigated, of which results show that pressure angle, pitch angle, tooth width, and fractal dimension have an incremental impact on the mean value of mesh stiffness. However, the fluctuating value of mesh stiffness has also increased as the pressure angle, tooth width, and pitch cone angle increase. Both the helix angle and the fractal roughness have a depressive impact on the total stiffness. But the difference is that, with the increase of the helix angle, the fluctuation of meshing stiffness has been decreased. Conversely, with the increase of the fractal roughness, the fluctuation of meshing stiffness has been increased.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 139
Author(s):  
Sharon A. Andreason ◽  
Omotola G. Olaniyi ◽  
Andrea C. Gilliard ◽  
Phillip A. Wadl ◽  
Livy H. Williams ◽  
...  

Sweet potato leaf curl virus (SPLCV) threatens global sweet potato production. SPLCV is transmitted by Bemisia tabaci or via infected vegetative planting materials; however, SPLCV was suggested to be seed transmissible, which is a characteristic that is disputed for geminiviruses. The objective of this study was to revisit the validity of seed transmission of SPLCV in sweet potato. Using large-scale grow-out of sweet potato seedlings from SPLCV-contaminated seeds over 4 consecutive years, approximately 23,034 sweet potato seedlings of 118 genotype entries were evaluated. All seedlings germinating in a greenhouse under insect-proof conditions or in a growth chamber were free of SPLCV; however, a few seedlings grown in an open bench greenhouse lacking insect exclusion tested positive for SPLCV. Inspection of these seedlings revealed that B. tabaci had infiltrated the greenhouse. Therefore, transmission experiments were conducted using B. tabaci MEAM1, demonstrating successful vector transmission of SPLCV to sweet potato. Additionally, tests on contaminated seed coats and germinating cotyledons demonstrated that SPLCV contaminated a high percentage of seed coats collected from infected maternal plants, but SPLCV was never detected in emerging cotyledons. Based on the results of grow-out experiments, seed coat and cotyledon tests, and vector transmission experiments, we conclude that SPLCV is not seed transmitted in sweet potato.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document