A novel vibration isolator for vibrating screen based on magnetorheological damper

Author(s):  
Mingzhuang Wu ◽  
Fei Chen ◽  
Aimin Li ◽  
Ziye Chen ◽  
Nana Sun
Author(s):  
K. Ohi ◽  
M. Mizuno ◽  
T. Kasai ◽  
Y. Ohkura ◽  
K. Mizuno ◽  
...  

In recent years, with electron microscopes coming into wider use, their installation environments do not necessarily give their performance full play. Their environmental conditions include air-conditioners, magnetic fields, and vibrations. We report a jointly developed entirely new vibration isolator which is effective against the vibrations transmitted from the floor.Conventionally, large-sized vibration isolators which need the digging of a pit have been used. These vibration isolators, however, are large present problems of installation and maintenance because of their large-size.Thus, we intended to make a vibration isolator which1) eliminates the need for changing the installation room2) eliminates the need of maintenance and3) are compact in size and easily installable.


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset

2018 ◽  
Vol 180 ◽  
pp. 02091
Author(s):  
Dominik Šedivý ◽  
Petr Ferfecki ◽  
Simona Fialová

This article presents the evaluation of force effects on squeeze film damper rotor. The rotor is placed eccentrically and its motion is translate-circular. The amplitude of rotor motion is smaller than its initial eccentricity. The force effects are calculated from pressure and viscous forces which were measured by using computational modeling. Damper was filled with magnetorheological fluid. Viscosity of this non-Newtonian fluid is given using Bingham rheology model. Yield stress is not constant and it is a function of magnetic induction which is described by many variables. The most important variables of magnetic induction are electric current and gap width between rotor and stator. The simulations were made in finite volume method based solver. The motion of the inner ring of squeeze film damper was carried out by dynamic mesh. Numerical solution was solved for five different initial eccentricities and angular velocities of rotor motion.


2020 ◽  
pp. 095745652097238
Author(s):  
Chun Cheng ◽  
Ran Ma ◽  
Yan Hu

Generalized geometric nonlinear damping based on the viscous damper with a non-negative velocity exponent is proposed to improve the isolation performance of a quasi-zero stiffness (QZS) vibration isolator in this paper. Firstly, the generalized geometric nonlinear damping characteristic is derived. Then, the amplitude-frequency responses of the QZS vibration isolator under force and base excitations are obtained, respectively, using the averaging method. Parametric analysis of the force and displacement transmissibility is conducted subsequently. At last, two phenomena are explained from the viewpoint of the equivalent damping ratio. The results show that decreasing the velocity exponent of the horizontal damper is beneficial to reduce the force transmissibility in the resonant region. For the case of base excitation, it is beneficial to select a smaller velocity exponent only when the nonlinear damping ratio is relatively large.


1993 ◽  
Vol 10 (1) ◽  
pp. 5-8
Author(s):  
R. K. Mehta ◽  
R. R. Mallepali ◽  
C. W. Schultz

2021 ◽  
pp. 147592172199474
Author(s):  
Bin Xu ◽  
Ye Zhao ◽  
Baichuan Deng ◽  
Yibang Du ◽  
Chen Wang ◽  
...  

Identification of nonlinear restoring force and dynamic loadings provides critical information for post-event damage diagnosis of structures. Due to high complexity and individuality of structural nonlinearities, it is difficult to provide an exact parametric mathematical model in advance to describe the nonlinear behavior of a structural member or a substructure under strong dynamic loadings in practice. Moreover, external dynamic loading applied to an engineering structure is usually unknown and only acceleration responses at limited degrees of freedom of the structure are available for identification. In this study, a nonparametric nonlinear restoring force and excitation identification approach combining the Legendre polynomial model and extended Kalman filter with unknown input is proposed using limited acceleration measurements fused with limited displacement measurements. Then, the performance of the proposed approach is first illustrated via numerical simulation with multi-degree-of-freedom frame structures equipped with magnetorheological dampers mimicking nonlinearity under direct dynamic excitation or base excitation using noise-polluted measurements. Finally, a dynamic experimental study on a four-story steel frame model equipped with a magnetorheological damper is carried out and dynamic response measurement is employed to validate the effectiveness of the proposed method by comparing the identified dynamic responses, nonlinear restoring force, and excitation force with the test measurements. The convergence and the effect of initial estimation errors of structural parameters on the final identification results are investigated. The effect of data fusion on improving the identification accuracy is also investigated.


Sign in / Sign up

Export Citation Format

Share Document