Axisymmetric Ferrofluid Oscillations in a Cylindrical Tank in Microgravity

2021 ◽  
Vol 33 (4) ◽  
Author(s):  
Álvaro Romero-Calvo ◽  
Miguel Ángel Herrada ◽  
Tim H. J. Hermans ◽  
Lidia Parrilla Benítez ◽  
Gabriel Cano-Gómez ◽  
...  
Keyword(s):  
2009 ◽  
Vol 2 (1) ◽  
pp. 258-262 ◽  
Author(s):  
Ho-Sung Lee ◽  
Jong-Hoon Yoon ◽  
Yeong-Moo Yi
Keyword(s):  

2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Tomoyo Taniguchi ◽  
Yoshinori Ando

To protect flat-bottom cylindrical tanks against severe damage from uplift motion, accurate evaluation of accompanying fluid pressures is indispensable. This paper presents a mathematical solution for evaluating the fluid pressure on a rigid flat-bottom cylindrical tank in the same manner as the procedure outlined and discussed previously by the authors (Taniguchi, T., and Ando, Y., 2010, “Fluid Pressures on Unanchored Rigid Rectangular Tanks Under Action of Uplifting Acceleration,” ASME J. Pressure Vessel Technol., 132(1), p. 011801). With perfect fluid and velocity potential assumed, the Laplace equation in cylindrical coordinates gives a continuity equation, while fluid velocity imparted by the displacement (and its time derivatives) of the shell and bottom plate of the tank defines boundary conditions. The velocity potential is solved with the Fourier–Bessel expansion, and its derivative, with respect to time, gives the fluid pressure at an arbitrary point inside the tank. In practice, designers have to calculate the fluid pressure on the tank whose perimeter of the bottom plate lifts off the ground like a crescent in plan view. However, the asymmetric boundary condition given by the fluid velocity imparted by the deformation of the crescent-like uplift region at the bottom cannot be expressed properly in cylindrical coordinates. This paper examines applicability of a slice model, which is a rigid rectangular tank with a unit depth vertically sliced out of a rigid flat-bottom cylindrical tank with a certain deviation from (in parallel to) the center line of the tank. A mathematical solution for evaluating the fluid pressure on a rigid flat-bottom cylindrical tank accompanying the angular acceleration acting on the pivoting bottom edge of the tank is given by an explicit function of a dimensional variable of the tank, but with Fourier series. It well converges with a few first terms of the Fourier series and accurately calculates the values of the fluid pressure on the tank. In addition, the slice model approximates well the values of the fluid pressure on the shell of a rigid flat-bottom cylindrical tank for any points deviated from the center line. For the designers’ convenience, diagrams that depict the fluid pressures normalized by the maximum tangential acceleration given by the product of the angular acceleration and diagonals of the tank are also presented. The proposed mathematical and graphical methods are cost effective and aid in the design of the flat-bottom cylindrical tanks that allow the uplifting of the bottom plate.


A layer of water in a cylindrical tank is known to be capable of sustaining standing solitary waves within a certain parametric domain when the tank is excited under vertical oscillation. A new mode of forced waves is discovered to exist in a different parametric domain for rectangular tanks with the wave sloshing across the short side of the tank and with its profile modulated by one or more hyperbolic-tangent, or kink-wave-like envelopes. A theoretical explanation for the kink wave properties is provided. Experiments were performed to confirm their existence.


2011 ◽  
Vol 255-260 ◽  
pp. 3687-3691 ◽  
Author(s):  
Jia Dong Wang ◽  
Ding Zhou ◽  
Wei Qing Liu

Sloshing response of liquid in a rigid cylindrical tank with a rigid annual baffle under horizontal sinusoidal loads was studied. The effect of the damping was considered in the analysis. Natural frequencies and modes of the system have been calculated by using the Sub-domain method. The total potential function under horizontal loads is assumed to be the sum of the tank potential function and the liquid perturbed function. The expression of the liquid perturbed function is obtained by introducing the generalized coordinates. Substituting potential functions into the free surface wave conditions, the dynamic response equations including the damping effect are established. The damping ratio is calculated by Maleki method. The liquid potential are obtained by solving the dynamic response equations of the system.


2002 ◽  
Vol 46 (03) ◽  
pp. 186-200 ◽  
Author(s):  
Pierre C. Sames ◽  
Delphine Marcouly ◽  
Thomas E. Schellin

To validate an existing finite volume computational method, featuring a novel scheme to capture the temporal evolution of the free surface, fluid motions in partially filled tanks were simulated. The purpose was to compare computational and experimental results for test cases where measurements were available. Investigations comprised sloshing in a rectangular tank with a baffle at 60% filling level and in a cylindrical tank at 50% filling level. The numerical study started with examining effects of systematic grid refinement and concluded with examining effects of three-dimensionality and effects of variation of excitation period and amplitude. Predicted time traces of pressures and forces compared favorably with measurements.


Author(s):  
D.A. Neganov ◽  
◽  
A.E. Zorin ◽  
O.I. Kolesnikov ◽  
G.V. Nesterov ◽  
...  

The methodology of laboratory modeling of the loading of utor welded joint of the tank is presented. The methodology is based on testing of the special design sample. It allows under uniaxial tension on the typical servo-hydraulic machines to reproduce in the zone of a utor welded joint the combined action of bending and shear forces, similar to that which occurs during the operation of a vertical cylindrical tank. To assess the distribution of the stress-strain state in the proposed design of the sample under its loading, the finite element modeling was performed in the ANSYS software package. It showed the fundamental correspondence of the stress distribution in the zone of the utor node in the sample and in the real tank. The experimental studies consisted in carrying out tests for the durability of a series of 16 samples loaded with the maximum force in the cycle, causing the calculated stresses in the zone of the welded utor node in the range of 100–200 % from the maximum permissible ones. The obtained results showed that the maximum loaded zone, where the destruction of the samples occurred, is the near-seam zone of the utor welded joint on the inside of the tank. This corresponds to the statistics of the real tank failures. It is established that the developed methodology ensures the possibility of carrying out correct resource tests of the tank utor welded joints. It is also possible to vary the stress-strain state scheme within a wide range in the area of the utor welded joint by changing the design parameters of the test sample. In compliance with the regulated welding technologies and the absence of unacceptable defects in the welded joint, the utor node has a high resource, which significantly exceeding 50 years of the tank operation.


2018 ◽  
Vol 45 ◽  
pp. 00030
Author(s):  
Barbara Kliszczewicz

The paper is dedicated to the analysis interactions between the structure of a field-based cylindrical tank made from reinforced concrete and randomly or unevenly distributed strata of subsoil. The numerical analysis with the use of the Z_Soil software package was carried out to investigate how variable geotechnical parameters demonstrated by subsoil strata with a low bearing capacity and a high deformability influence strain and stress of the tank shell and bottom. The arrangement made up of a cylindrical tank and stratified subsoil (its 3D model) was subjected to the analysis with the consideration of the elastic and plastic properties of soil (the Coulomb-Mohr model). The analysis results, presented as diagrams of the structure deformation and stresses illustrate the uneven settlement of the tank shell and its internal strain.


2018 ◽  
Vol 4 (4) ◽  
Author(s):  
Hidekazu Takazawa ◽  
Kazuma Hirosaka ◽  
Katsumasa Miyazaki ◽  
Norihide Tohyama ◽  
Naomi Matsumoto

A new Japanese nuclear regulation involves estimating the possible damage to plant structures due to intentional aircraft impact. The effect of aircraft impact needs to be considered in the existing nuclear power plants. The structural damage and fuel dispersion behavior after aircraft impact into plant structures can be evaluated using finite element analysis (FEA). FEA needs validated experimental data to determine the reliability of the results. In this study, an analysis method was validated using a simple model such as a cylindrical tank. Numerical simulations were conducted to evaluate the impact and dispersion behavior of a water-filled cylindrical tank. The simulated results were compared with the test results of the VTT Technical Research Centre of Finland (VTT). The simulations were carried out using a multipurpose FEA code LS-DYNA®. The cylindrical tank was modeled using a shell element, and the tank water was modeled using smoothed particle hydrodynamics (SPH) elements. First, two analysis models were used to evaluate the effect of the number of SPH elements. One had about 300,000 SPH elements and the other had 37,000 SPH elements. The cylindrical tank ruptured in the longitudinal direction after crashing into a rigid wall, and the filled water dispersed. There were few differences in the simulated results when using different numbers of SPH elements. The VTT impact test was simulated with an arbitrary Lagrangian-Eulerian (ALE) element to consider the air drag. The analytical dispersion pattern and history of dispersion velocity ratio agreed well with the impact test results.


Sign in / Sign up

Export Citation Format

Share Document