Low Velocity Impact Behavior of 3D Hollow Core Sandwich Composites Produced with Flat-Knitted Spacer Fabrics

2018 ◽  
Vol 19 (12) ◽  
pp. 2581-2589 ◽  
Author(s):  
Mohammad Azadian ◽  
Hossein Hasani ◽  
Mahmoud Mehrdad Shokrieh
2018 ◽  
Vol 49 (4) ◽  
pp. 465-483 ◽  
Author(s):  
Hadi Dabiryan ◽  
Fatemeh Hasanalizade ◽  
Mojtaba Sadighi

Structural parameters of fabrics influence the mechanical behaviour of fabric-reinforced composites. Weft-knitted spacer fabrics have high energy absorption capacity. In this paper, low-velocity impact behavior of composites reinforced with weft-knitted spacer fabrics has been studied using energy-balance method. The effect of fabric geometry on the impact behavior of composites was investigated. A theoretical model was generated to predict the energy dissipated through the impact, considering the structural parameters of fabrics as reinforcement of composites. For this purpose, dissipated energies due to contact, membrane and bending deformation of fabrics, and buckling deformation of spacer yarns were considered. In order to evaluate the proposed model, weft-knitted spacer fabrics with two types of spacer yarn's orientation were used as reinforcement of composites. Low-velocity impact examinations were performed using the drop hammer testing machine. The results showed that the model has about 12 and 13% error in prediction of dissipated energies of different samples. Comparison between theoretical and experimental results confirms that the proposed model is capable to predict the impact behavior of weft-knitted spacer fabric-reinforced composites.


2021 ◽  
Vol 276 ◽  
pp. 114567
Author(s):  
Amirreza Tarafdar ◽  
Gholamhossein Liaghat ◽  
Hamed Ahmadi ◽  
Omid Razmkhah ◽  
Sahand Chitsaz Charandabi ◽  
...  

1999 ◽  
Author(s):  
Uday K. Vaidya ◽  
Mohan V. Kamath ◽  
Mahesh V. Hosur ◽  
Anwarul Haque ◽  
Shaik Jeelani

Abstract In the current work, sandwich composite structures with innovative constructions referred to as Z-pins, or truss core pins are investigated, in conjunction with traditional honeycomb and foam core sandwich constructions, such that they exhibit enhanced transverse stiffness, high damage resistance and furthermore, damage tolerance to impact. While the investigations pertaining to low velocity impact have appeared recently in Vaidya et al. 1999, the current paper deals with compression-after-impact studies conducted to evaluate the residual properties of sandwich composites “with” and “without” reinforced foam cores. The resulting sandwich composites have been investigated for their low velocity (< 5 m/sec) impact loading response using instrumented impact testing at energy levels ranging from 5 J to 50 J impact energy. The transverse stiffness of the cores and their composites has also been evaluated through static compression studies. Compression-after-impact studies were then performed on the sandwich composites with traditional and pin-reinforcement cores. Supporting vibration studies have been conducted to assess the changes in stiffness of the samples as a result of the impact damage. The focus of this paper is on the compression-after-impact (CAI) response and vibration studies with accompanying discussion pertaining to the low velocity impact.


Sign in / Sign up

Export Citation Format

Share Document