Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations

Author(s):  
Alok Ranjan ◽  
Prateek K. Jha
Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 389
Author(s):  
Jingwen Liu ◽  
Holger Grohganz ◽  
Korbinian Löbmann ◽  
Thomas Rades ◽  
Nele-Johanna Hempel

Co-amorphous drug delivery systems (CAMS) are characterized by the combination of two or more (initially crystalline) low molecular weight components that form a homogeneous single-phase amorphous system. Over the past decades, CAMS have been widely investigated as a promising approach to address the challenge of low water solubility of many active pharmaceutical ingredients. Most of the studies on CAMS were performed on a case-by-case basis, and only a few systematic studies are available. A quantitative analysis of the literature on CAMS under certain aspects highlights not only which aspects have been of great interest, but also which future developments are necessary to expand this research field. This review provides a comprehensive updated overview on the current published work on CAMS using a quantitative approach, focusing on three critical quality attributes of CAMS, i.e., co-formability, physical stability, and dissolution performance. Specifically, co-formability, molar ratio of drug and co-former, preparation methods, physical stability, and in vitro and in vivo performance were covered. For each aspect, a quantitative assessment on the current status was performed, allowing both recent advances and remaining research gaps to be identified. Furthermore, novel research aspects such as the design of ternary CAMS are discussed.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 74 ◽  
Author(s):  
Marival Bermejo ◽  
Bart Hens ◽  
Joseph Dickens ◽  
Deanna Mudie ◽  
Paulo Paixão ◽  
...  

The application of in silico modeling to predict the in vivo outcome of an oral drug product is gaining a lot of interest. Fully relying on these models as a surrogate tool requires continuous optimization and validation. To do so, intraluminal and systemic data are desirable to judge the predicted outcomes. The aim of this study was to predict the systemic concentrations of ibuprofen after oral administration of an 800 mg immediate-release (IR) tablet to healthy subjects in fasted-state conditions. A mechanistic oral absorption model coupled with a two-compartmental pharmacokinetic (PK) model was built in Phoenix WinNonlinWinNonlin® software and in the GastroPlus™ simulator. It should be noted that all simulations were performed in an ideal framework as we were in possession of a plethora of in vivo data (e.g., motility, pH, luminal and systemic concentrations) in order to evaluate and optimize these models. All this work refers to the fact that important, yet crucial, gastrointestinal (GI) variables should be integrated into biopredictive dissolution testing (low buffer capacity media, considering phosphate versus bicarbonate buffer, hydrodynamics) to account for a valuable input for physiologically-based pharmacokinetic (PBPK) platform programs. While simulations can be performed and mechanistic insights can be gained from such simulations from current software, we need to move from correlations to predictions (IVIVC → IVIVP) and, moreover, we need to further determine the dynamics of the GI variables controlling the dosage form transit, disintegration, dissolution, absorption and metabolism along the human GI tract. Establishing the link between biopredictive in vitro dissolution testing and mechanistic oral absorption modeling (i.e., physiologically-based biopharmaceutics modeling (PBBM)) creates an opportunity to potentially request biowaivers in the near future for orally administered drug products, regardless of its classification according to the Biopharmaceutics Classification System (BCS).


2021 ◽  
Vol 11 (5) ◽  
pp. 336
Author(s):  
Mohammed Ghiboub ◽  
Ahmed M. I. Elfiky ◽  
Menno P. J. de Winther ◽  
Nicola R. Harker ◽  
David F. Tough ◽  
...  

Histone deacetylases (HDACs) and bromodomain-containing proteins (BCPs) play a key role in chromatin remodeling. Based on their ability to regulate inducible gene expression in the context of inflammation and cancer, HDACs and BCPs have been the focus of drug discovery efforts, and numerous small-molecule inhibitors have been developed. However, dose-limiting toxicities of the first generation of inhibitors, which typically target multiple HDACs or BCPs, have limited translation to the clinic. Over the last decade, an increasing effort has been dedicated to designing class-, isoform-, or domain-specific HDAC or BCP inhibitors, as well as developing strategies for cell-specific targeted drug delivery. Selective inhibition of the epigenetic modulators is helping to elucidate the functions of individual epigenetic proteins and has the potential to yield better and safer therapeutic strategies. In accordance with this idea, several in vitro and in vivo studies have reported the ability of more selective HDAC/BCP inhibitors to recapitulate the beneficial effects of pan-inhibitors with less unwanted adverse events. In this review, we summarize the most recent advances with these strategies, discussing advantages and limitations of these approaches as well as some therapeutic perspectives, focusing on autoimmune and inflammatory diseases.


ADMET & DMPK ◽  
2022 ◽  
Author(s):  
Marilyn N. Martinez ◽  
Mark G. Papich ◽  
Raafat Fahmy

Many gaps exist in our understanding of species differences in gastrointestinal (GI) fluid composition and the associated impact of food intake and dietary composition on in vivo drug solubilization. This information gap can lead to uncertainties with regard to how best to formulate pharmaceuticals for veterinary use or the in vitro test conditions that will be most predictive of species-specific in vivo oral product performance. To address these challenges, this overview explores species-specific factors that can influence oral drug solubility and the formulation approaches that can be employed to overcome solubility-associated bioavailability difficulties. These discussions are framed around some of the basic principles associated with drug solubilization, reported species differences in GI fluid composition, types of oral dosage forms typically given for the various animal species, and the effect of prandial state in dogs and cats. This basic information is integrated into a question-and-answer section that addresses some of the formulation issues that can arise in the development of veterinary medicinals.


MRS Advances ◽  
2018 ◽  
Vol 3 (37) ◽  
pp. 2203-2219 ◽  
Author(s):  
Tapiwa E. Manyarara ◽  
Star Khoza ◽  
Admire Dube ◽  
Chiedza C. Maponga

ABSTRACTBackground: The development of appropriate dosage forms for paediatric antiretroviral therapy is key for improved therapeutic outcomes in children. The focus of this study was to improve solubility, dissolution rate, drug release and maintain high drug permeability.Methodology: A nanoemulsion was prepared using emulsion inversion point and evaluated. The nanoemulsion had nevirapine (3% w/w). In vitro drug release studies were performed using dialysis membrane. Permeability studies using the Caco-2 cell model were performed for the formulation.Results: The optimized nevirapine nanoemulsion had a mean droplet size of 36.09±12.27nm, low pdI of 0.598 and zeta potential of -7.87±4.35mV. At pH 2, the nanoemulsion released 76 ± 2 % of nevirapine within 2 h, while at pH 6.4 value representing the small intestine, amount of nevirapine released was 41.6± 4 %. The permeability rate of the nevirapine nanoemulsion was 30.02 x 10-6cm/s and higher than that of propranolol. Efflux ratio was 0.02 indicating low chance of drug efflux occurring.Conclusion: The results showed that a modified liquid drug release formulations of nevirapine could improve rate of dissolution and maintain high permeability and low drug efflux improving bioavailability of nevirapine in vivo.


2021 ◽  
Author(s):  
◽  
Rafael Leal Monteiro Paraiso

Computational oral absorption models, in particular PBBM models, provide a powerful tool for researchers and pharmaceutical scientists in drug discovery and formulation development, as they mimic and can describe the physiologically processes relevant to the oral absorption. PBBM models provide in vivo context to in vitro data experiments and allow for a dynamic understanding of in vivo drug disposition that is not typically provided by data from standard in vitro assays. Investigations using these models permit informed decision-making, especially regarding to formulation strategies in drug development. PBBM models, but can also be used to investigate and provide insight into mechanisms responsible for complex phenomena such as food effect in drug absorption. Although there are obviously still some gaps regarding the in silico construction of the gastrointestinal environment, ongoing research in the area of oral drug absorption (e.g. the UNGAP, AGE-POP and InPharma projects) will increase knowledge and enable improvement of these models. PBBM can nowadays provide an alternative approach to the development of in vitro–in vivo correlations. The case studies presented in this thesis demonstrate how PBBM can address a mechanistic understanding of the negative food effect and be used to set clinically relevant dissolution specification for zolpidem immediate release tablets. In both cases, we demonstrated the importance of integrating drug properties with physiological variables to mechanistically understand and observe the impact of these parameters on oral drug absorption. Various complex physiological processes are initiated upon food consumption, which can enhance or reduce a drug’s dissolution, solubility, and permeability and thus lead to changes in drug absorption. With improvements in modeling and simulation software and design of in vitro studies, PBBM modeling of food effects may eventually serve as a surrogate for clinical food effect studies for new doses and formulations or drugs. Furthermore, the application of these models may be even more critical in case of compounds where execution of clinical studies in healthy volunteers would be difficult (e.g., oncology drugs). In the fourth chapter we have demonstrated the establishment of the link between biopredictive in vitro dissolution testing (QC or biorelevant method) PBBM coupled with PD modeling opens the opportunity to set truly clinically relevant specifications for drug release. This approach can be extended to other drugs regardless of its classification according to the BCS. With the increased adoption of PBBM, we expect that best practices in development and verification of these models will be established that can eventually inform a regulatory guidance. Therefore, the application of Physiologically Based Biopharmaceutical Modelling is an area with great potential to streamline late-stage drug development and impact on regulatory approval procedures. Freie Schlagwörter / Tags


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 416 ◽  
Author(s):  
Schneider ◽  
Koziolek ◽  
Weitschies

More than 50 years ago, the first concepts for gastroretentive drug delivery systems were developed. Despite extensive research in this field, there is no single formulation concept for which reliable gastroretention has been demonstrated under different prandial conditions. Thus, gastroretention remains the holy grail of oral drug delivery. One of the major reasons for the various setbacks in this field is the lack of predictive in vitro and in vivo test methods used during preclinical development. In most cases, human gastrointestinal physiology is not properly considered, which leads to the application of inappropriate in vitro and animal models. Moreover, conditions in the stomach are often not fully understood. Important aspects such as the kinetics of fluid volumes, gastric pH or mechanical stresses have to be considered in a realistic manner, otherwise, the gastroretentive potential as well as drug release of novel formulations cannot be assessed correctly in preclinical studies. This review, therefore, highlights the most important aspects of human gastrointestinal physiology and discusses their potential implications for the evaluation of gastroretentive drug delivery systems.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Haowen Li ◽  
Biao Liu ◽  
Hui Ao ◽  
Jingxin Fu ◽  
Yian Wang ◽  
...  

AbstractDisulfiram (DSF) has been considered as “Repurposing drug” in cancer therapy in recent years based on its good antitumor efficacy. DSF is traditionally used as an oral drug in the treatment of alcoholism. To overcome its rapid degradation and instability, DSF nanosuspensions (DSF/SPC-NSps) were prepared using soybean lecithin (SPC) as a stabilizer of high drug-loaded content (44.36 ± 1.09%). Comprehensive characterization of the nanosuspensions was performed, and cell cytotoxicity, in vivo antitumor efficacy and biodistribution were studied. DSF/SPC-NSps, having a spherical appearance with particle size of 155 nm, could remain very stable in different physiological media, and sustained release. The in vitro MTT assay indicated that the cytotoxicity of DSF/SPC-NSps was enhanced remarkably compared to free DSF against the 4T1 cell line. The IC50 value decreased by 11-fold (1.23 vs. 13.93 μg/mL, p < 0.01). DSF/SPC-NSps groups administered via intravenous injections exhibited better antitumor efficacy compared to the commercial paclitaxel injection (PTX injection) and had a dose-dependent effect in vivo. Notably, DSF/SPC-NSps exhibited similar antitumor activity following oral administration as PTX administration via injection into a vein. These results suggest that the prepared nanosuspensions can be used as a stable delivery vehicle for disulfiram, which has potential application in breast cancer chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document