In situ atomic-scale analysis of Rayleigh instability in ultrathin gold nanowires

Nano Research ◽  
2017 ◽  
Vol 11 (2) ◽  
pp. 625-632 ◽  
Author(s):  
Shang Xu ◽  
Peifeng Li ◽  
Yang Lu
2020 ◽  
Vol 26 (S2) ◽  
pp. 1838-1840
Author(s):  
Eita Tochigi ◽  
Takaaki Sato ◽  
Naoya Shibata ◽  
Hiroyuki Fujita ◽  
Yuichi Ikuhara

2020 ◽  
Vol 91 (8) ◽  
pp. 083704
Author(s):  
J. Houard ◽  
A. Normand ◽  
E. Di Russo ◽  
C. Bacchi ◽  
P. Dalapati ◽  
...  

2020 ◽  
Vol 200 ◽  
pp. 959-970
Author(s):  
David M. Collins ◽  
Neil D’Souza ◽  
Chinnapat Panwisawas ◽  
Chrysanthi Papadaki ◽  
Geoff D. West ◽  
...  

ACS Catalysis ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 8653-8663 ◽  
Author(s):  
Achraf el Hadri ◽  
Isabel Gómez-Recio ◽  
Eloy del Río ◽  
Juan C. Hernández-Garrido ◽  
Raquel Cortés-Gil ◽  
...  

Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Iryna Zelenina ◽  
Igor Veremchuk ◽  
Yuri Grin ◽  
Paul Simon

Nano-scaled thermoelectric materials attract significant interest due to their improved physical properties as compared to bulk materials. Well-shaped nanoparticles such as nano-bars and nano-cubes were observed in the known thermoelectric material PbTe. Their extended two-dimensional nano-layer arrangements form directly in situ through electron-beam treatment in the transmission electron microscope. The experiments show the atomistic depletion mechanism of the initial crystal and the recrystallization of PbTe nanoparticles out of the microparticles due to the local atomic-scale transport via the gas phase beyond a threshold current density of the beam.


ChemNanoMat ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 100-100
Author(s):  
Trond R. Henninen ◽  
Debora Keller ◽  
Rolf Erni

2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document