Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery

Nano Research ◽  
2021 ◽  
Author(s):  
Zhongyin Chen ◽  
Tao Liao ◽  
Lihui Wan ◽  
Ying Kuang ◽  
Chang Liu ◽  
...  
2016 ◽  
Vol 1 (6) ◽  
pp. 480-487 ◽  
Author(s):  
Ye Tian ◽  
Ranran Guo ◽  
Yunfeng Jiao ◽  
Yangfei Sun ◽  
Shun Shen ◽  
...  

Transferrin-capped hollow mesoporous silica nanoparticles through disulfide linkages realize tumor-targeting delivery and glutathione-induced drug release.


2019 ◽  
Vol 7 (38) ◽  
pp. 5789-5796 ◽  
Author(s):  
Wei Hu ◽  
Xiaowen Bai ◽  
Yaping Wang ◽  
Zhentao Lei ◽  
Haipeng Luo ◽  
...  

A near-infrared (NIR)-responsive drug delivery system was established by grafting UCST polymers on the surfaces of hollow mesoporous silica nanoparticles (HMSNs) using the photothermal agent indocyanine green (ICG), which provided a new and promising strategy for drug delivery.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
María Vallet-Regí

Mesoporous silica nanoparticles are receiving growing attention by the scientific biomedical community. Among the different types of inorganic nanomaterials, mesoporous silica nanoparticles have emerged as promising multifunctional platforms for nanomedicine. Since their introduction in the drug delivery landscape in 2001, mesoporous materials for drug delivery are receiving growing scientific interest for their potential applications in the biotechnology and nanomedicine fields. The ceramic matrix efficiently protects entrapped guest molecules against enzymatic degradation or denaturation induced by pH and temperature as no swelling or porosity changes take place as a response to variations in the surrounding medium. It is possible to load huge amounts of cargo into the mesopore voids and capping the pore entrances with different nanogates. The application of a stimulus provokes the nanocap removal and triggers the departure of the cargo. This strategy permits the design of stimuli-responsive drug delivery nanodevices.


2015 ◽  
Vol 3 (31) ◽  
pp. 6480-6489 ◽  
Author(s):  
Haijiao Zhang ◽  
Huijuan Xu ◽  
Minghong Wu ◽  
Yufang Zhong ◽  
Donghai Wang ◽  
...  

Novel hollow mesoporous silica nanoparticles (HMSNs) with rough surfaces have been successfully prepared using a facile soft–hard template route.


2016 ◽  
Vol 22 (11) ◽  
pp. 3681-3685 ◽  
Author(s):  
Zhiying Fan ◽  
Dongdong Li ◽  
Xue Yu ◽  
Yuping Zhang ◽  
Yong Cai ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoxia Song ◽  
Zhi Chen ◽  
Xue Zhang ◽  
Junfeng Xiong ◽  
Teng Jiang ◽  
...  

AbstractMagnetic micro/nanorobots attracted much attention in biomedical fields because of their precise movement, manipulation, and targeting abilities. However, there is a lack of research on intelligent micro/nanorobots with stimuli-responsive drug delivery mechanisms for cancer therapy. To address this issue, we developed a type of strong covalently bound tri-bead drug delivery microrobots with NIR photothermal response azobenzene molecules attached to their carboxylic surface groups. The tri-bead microrobots are magnetic and showed good cytocompatibility even when their concentration is up to 200 µg/mL. In vitro photothermal experiments demonstrated fast NIR-responsive photothermal property; the microrobots were heated to 50 °C in 4 min, which triggered a significant increase in drug release. Motion control of the microrobots inside a microchannel demonstrated the feasibility of targeted therapy on tumor cells. Finally, experiments with lung cancer cells demonstrated the effectiveness of targeted chemo-photothermal therapy and were validated by cell viability assays. These results indicated that tri-bead microrobots have excellent potential for targeted chemo-photothermal therapy for lung cancer cell treatment.


Author(s):  
Marzieh Heidari Nia ◽  
Roya Koshani ◽  
Jose G. Munguia-Lopez ◽  
Ali Reza Kiasat ◽  
Joseph M. Kinsella ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document