Characterisation of the mechanical behaviour and the forming limits of metal foils using a pneumatic bulge test

2009 ◽  
Vol 2 (S1) ◽  
pp. 605-608 ◽  
Author(s):  
A. Diehl ◽  
U. Vierzigmann ◽  
U. Engel
2015 ◽  
Vol 100 ◽  
pp. 861-867
Author(s):  
Josef Káňa ◽  
Bohuslav Mašek ◽  
Kateřina Rubešová

2012 ◽  
Vol 6 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Jens Kappes ◽  
Mathias Liewald ◽  
Simon Jupp ◽  
Christoph Pirchl ◽  
Roman Herstelle

2014 ◽  
Vol 1018 ◽  
pp. 245-252 ◽  
Author(s):  
Alexander Braun ◽  
Johannes Storz ◽  
Markus Bambach ◽  
Gerhard Hirt

Due to new material concepts (e.g. boron-manganese steels), hot stamping of sheet metal parts has emerged in order to produce high strength components. Thereby, the design of hot stamping processes by means of finite element simulations requires information about the thermo-mechanical material behaviour up to high strain levels at various temperatures as simulation input. It is known that hot tensile tests are only evaluable until low strain levels. Therefore, a hot gas bulge test for temperatures in the range of 600 °C to 900 °C and strain rates up to 1/s is being developed. In order to design such a hot gas bulge test, the requirements (e.g. forming pressure) are estimated by finite element simulations. The result is a test bench, which already enables a pneumatic forming of specimens at room temperature and pressures up to 200 bar without any unexpected side effects.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Author(s):  
O.T. Woo ◽  
G.J.C. Carpenter

To study the influence of trace elements on the corrosion and hydrogen ingress in Zr-2.5 Nb pressure tube material, buttons of this alloy containing up to 0.83 at% Fe were made by arc-melting. The buttons were then annealed at 973 K for three days, furnace cooled, followed by ≈80% cold-rolling. The microstructure of cold-worked Zr-2.5 at% Nb-0.83 at% Fe (Fig. 1) contained both β-Zr and intermetallic precipitates in the α-Zr grains. The particles were 0.1 to 0.7 μm in size, with shapes ranging from spherical to ellipsoidal and often contained faults. β-Zr appeared either roughly spherical or as irregular elongated patches, often extending to several micrometres.The composition of the intermetallic particles seen in Fig. 1 was determined using Van Cappellen’s extrapolation technique for energy dispersive X-ray analysis of thin metal foils. The method was employed to avoid corrections for absorption and fluorescence via the Cliff-Lorimer equation: CA/CB = kAB · IA/IB, where CA and CB are the concentrations by weight of the elements A and B, and IA and IB are the X-ray intensities; kAB is a proportionality factor.


Sign in / Sign up

Export Citation Format

Share Document