scholarly journals A state of the art review of hydroforming technology

2019 ◽  
Vol 13 (5) ◽  
pp. 789-828 ◽  
Author(s):  
Colin Bell ◽  
Jonathan Corney ◽  
Nicola Zuelli ◽  
David Savings

AbstractHydroforming is a relatively new metal forming process with many advantages over traditional cold forming processes including the ability to create more complicated components with fewer operations. For certain geometries, hydroforming technology permits the creation of parts that are lighter weight, have stiffer properties, are cheaper to produce and can be manufactured from fewer blanks which produces less material waste. This paper provides a detailed survey of the hydroforming literature of both established and emerging processes in a single taxonomy. Recently reported innovations in hydroforming processes (which are incorporated in the taxonomy) are also detailed and classified in terms of “technology readiness level”. The paper concludes with a discussion on the future of hydroforming including the current state of the art techniques, the research directions, and the process advantages to make predictions about emerging hydroforming technologies.

2021 ◽  
Author(s):  
Kamesh Namuduri

Advanced Air Mobility (AAM) is a newly emerging industry focus, as well as a research and development discipline. Innovations and technologies resulting from AAM will change the way that we move cargo and people in and around cities. Industry is moving fast with excitement to deploy AAM solutions. However, there are multiple technical challenges that need to be overcome before AAM becomes a reality. This article takes a closer look at the technology readiness level of AAM solutions, identifies open research problems and directions to address them.


2021 ◽  
Author(s):  
Kamesh Namuduri

Advanced Air Mobility (AAM) is a newly emerging industry focus, as well as a research and development discipline. Innovations and technologies resulting from AAM will change the way that we move cargo and people in and around cities. Industry is moving fast with excitement to deploy AAM solutions. However, there are multiple technical challenges that need to be overcome before AAM becomes a reality. This article takes a closer look at the technology readiness level of AAM solutions, identifies open research problems and directions to address them.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1573
Author(s):  
Vito Mario Fico ◽  
María Ángeles Martín Prats ◽  
Carmelina Ierardi

Many papers related to this topic can be found in the bibliography; however, just a modest percentage of the introduced techniques are developed to a Technology Readiness Level (TRL) sufficiently high to be implementable in industrial applications. This paper is focused precisely on the review of this specific topic. The investigation on the state of the art has been carried out as a systematic review, a very rigorous and reliable standardised scientific methodology, and tries to collect the articles which are closer to a possible implementation. This selection has been carefully done with the definition of a series of rules, drawn to represent the adequate level of readiness of fault detection techniques which the various articles propose.


2010 ◽  
Vol 25 (7) ◽  
pp. 1215-1224 ◽  
Author(s):  
Lei Guan ◽  
Guoyi Tang ◽  
Paul K. Chu

Electroplastic manufacturing processing (EPMP) is a relatively new metal-forming process that is energy efficient, environmentally friendly, and versatile. In particular, it can be used to manufacture metals or alloys that are difficult to process by conventional manufacturing protocols. There have been significant advances in EPMP in the past decade, and this review summarizes our current state of understanding and describes recent developments in EPMP. Particular emphasis is placed on describing the mechanisms responsible for the electroplastic effect and microstructure evolution as well as major advances in EPMP of metals. Challenges facing theoretical and experimental investigations are also discussed.


2021 ◽  
Vol 295 ◽  
pp. 126426
Author(s):  
Fernando Bruno Dovichi Filho ◽  
York Castillo Santiago ◽  
Electo Eduardo Silva Lora ◽  
José Carlos Escobar Palacio ◽  
Oscar Agustin Almazan del Olmo

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110121
Author(s):  
David Portugal ◽  
André G Araújo ◽  
Micael S Couceiro

To move out of the lab, service robots must reveal a proven robustness so they can be deployed in operational environments. This means that they should function steadily for long periods of time in real-world areas under uncertainty, without any human intervention, and exhibiting a mature technology readiness level. In this work, we describe an incremental methodology for the implementation of an innovative service robot, entirely developed from the outset, to monitor large indoor areas shared by humans and other obstacles. Focusing especially on the reliability of the fundamental localization system of the robot in the long term, we discuss all the incremental software and hardware features, design choices, and adjustments conducted, and show their impact on the performance of the robot in the real world, in three distinct 24-h long trials, with the ultimate goal of validating the proposed mobile robot solution for indoor monitoring.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

Sign in / Sign up

Export Citation Format

Share Document