scholarly journals Hesperetin on Cell Surface Glycoconjugates Abnormalities and Immunohistochemical Staining with Cytokeratin in 7,12 Dimethylbenz(a)anthracene Induced Hamster Buccal Pouch Carcinogenesis

2017 ◽  
Vol 33 (4) ◽  
pp. 438-444 ◽  
Author(s):  
Sukumar Babukumar ◽  
Veerasamy Vinothkumar ◽  
Periyannan Velu ◽  
Duraisamy Ramachandhiran
Development ◽  
1985 ◽  
Vol 86 (1) ◽  
pp. 39-51
Author(s):  
Lydie Gualandris ◽  
Pierre Rouge ◽  
Anne-Marie Duprat

The possible involvement of target membrane specific receptor(s) in the transmission of the neural signal leading to activation of the intracellular machinery involved in the process of neural determination, has been examined using lectin probes (Con A, succinylated-ConA, LcA, PsA and SBA). Not only Con A binding sites but many different glycoconjugated molecules (α-Dgalactose, N-acetyl-D-galactosamine, α-D-fucose, N-acetyl-D-glucosamine, etc.) would have to be involved, if neural receptor(s) are invoked to explain initiation of neural induction. We show here that the close involvement of such receptor molecules in neural induction is so far hypothetical and remains to be demonstrated. Moreover we are inclined to the view of Barth and others who suggested that ionic fluxes and physicochemical and electrophysiological properties of the target membrane could play a crucial role in neural induction.


2021 ◽  
Author(s):  
Nageswari Yarravarapu ◽  
Rohit Sai Reddy Konada ◽  
Narek Darabedian ◽  
Nichole J. Pedowtiz ◽  
Soumya N. Krishnamurthy ◽  
...  

Glycan binding often mediates extracellular macromolecular recognition events. Accurate characterization of these binding interactions can be difficult because of dissociation and scrambling that occur during purification and analysis steps. Use of photocrosslinking methods has been pursued to covalently capture glycan-dependent interactions in situ however use of metabolic glycan engineering methods to incorporate photocrosslinking sugar analogs is limited to certain cell types. Here we report an exo-enzymatic labeling method to add a diazirine-modified sialic acid (SiaDAz) to cell surface glycoconjugates. The method involves chemoenzymatic synthesis of diazirine-modified CMP-sialic acid (CMP-SiaDAz), followed by sialyltransferase-catalyzed addition of SiaDAz to desialylated cell surfaces. Cell surface SiaDAz-ylation is compatible with multiple cell types and is facilitated by endogenous extracellular sialyltransferase activity present in Daudi B cells. This method for extracellular addition of α2-6-linked SiaDAz enables UV-induced crosslinking of CD22, demonstrating the utility for covalent capture of glycan-mediated binding interactions.


2007 ◽  
Vol 3 (3) ◽  
pp. 290-294 ◽  
Author(s):  
Namasivayam Senthil . ◽  
Shanmugam Manoharan . ◽  
Subramanian Balakris . ◽  
Cinnamanoor Rajamani . ◽  
Radhakrishnan Murali . ◽  
...  

Author(s):  
Alan Wanke ◽  
Milena Malisic ◽  
Stephan Wawra ◽  
Alga Zuccaro

Abstract To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant–microbe interactions.


1987 ◽  
Vol 105 (6) ◽  
pp. 2973-2987 ◽  
Author(s):  
C J Horst ◽  
D M Forestner ◽  
J C Besharse

The ciliary base is marked by a transition zone in which Y-shaped cross-linkers extend from doublet microtubules to the plasma membrane. Our goal was to investigate the hypothesis that the cross-linkers form a stable interaction between membrane or cell surface components and the underlying microtubule cytoskeleton. We have combined Triton X-100 extraction with lectin cytochemistry in the photoreceptor sensory cilium to investigate the relationship between cell surface glycoconjugates and the underlying cytoskeleton, and to identify the cell surface components involved. Wheat germ agglutinin (WGA) binds heavily to the cell surface in the region of the Y-shaped cross-linkers of the neonatal rat photoreceptor cilium. WGA binding is not removed by prior digestion with neuraminidase and succinyl-WGA also binds the proximal cilium, suggesting a predominance of N-acetylglucosamine containing glycoconjugates. Extraction of the photoreceptor plasma membrane with Triton X-100 removes the lipid bilayer, leaving the Y-shaped crosslinkers associated with the axoneme. WGA-binding sites are found at the distal ends of the crosslinkers after Triton X-100 extraction, indicating that the microtubule-membrane cross-linkers retain both a transmembrane and a cell surface component after removal of the lipid bilayer. To identify glycoconjugate components of the cross-linkers we used a subcellular fraction enriched in axonemes from adult bovine retinas. Isolated, detergent-extracted bovine axonemes show WGA binding at the distal ends of the cross-linkers similar to that seen in the neonatal rat. Proteins of the axoneme fraction were separated by SDS-PAGE and electrophoretically transferred to nitrocellulose. WGA labeling of the nitrocellulose transblots reveals three glycoconjugates, all of molecular mass greater than 400 kD. The major WGA-binding glycoconjugate has an apparent molecular mass of approximately 600 kD and is insensitive to prior digestion with neuraminidase. This glycoconjugate may correspond to the dominant WGA-binding component seen in cytochemical experiments.


2007 ◽  
Vol 61 (4) ◽  
Author(s):  
L. Sihelníková ◽  
I. Tvaroška

AbstractGold glyconanoparticles as elements of the nanoworld belong to a group of particles with diameters not exceeding 100 nm. This size scale makes them conformable to common biomolecules. A gold glyconanoparticle consists of three different parts: the gold core, the linkers, and saccharide ligands. The glycocalyx-like surface of these particles mimics the presentation of carbohydrate epitopes of cell surface glycoconjugates. As a consequence, gold glyconanoparticles provide inimitable tools for probing and manipulating the mechanisms of biological processes based on carbohydrate interactions. Each component of the gold glyconanoparticle has a profound effect on the nanoparticle’s properties. Therefore, in this review, elucidation of the overall behavior and properties of gold glyconanoparticles is based on a step by step (component by component) description of the system.


Sign in / Sign up

Export Citation Format

Share Document