scholarly journals Identification and expression analysis under abiotic stress of the R2R3-MYB genes in Ginkgo biloba L.

2017 ◽  
Vol 23 (3) ◽  
pp. 503-516 ◽  
Author(s):  
Xinliang Liu ◽  
Wanwen Yu ◽  
Xuhui Zhang ◽  
Guibin Wang ◽  
Fuliang Cao ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Qiuling He ◽  
Don C. Jones ◽  
Wei Li ◽  
Fuliang Xie ◽  
Jun Ma ◽  
...  

2021 ◽  
Author(s):  
Yuan Yuan ◽  
Xiping Yang ◽  
Mengfang Feng ◽  
Hongyan Ding ◽  
Khan Muhammad Tahir ◽  
...  

Abstract Background: Sugarcane (Saccharum) is the most important sugar crop in the world. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. Results: A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genome and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which MYB43, MYB53, MYB65, MYB78, and MYB99 were validated by qPCR. Allelic expression dominance in the stem was more significant than that in the leaf, implying the differential expression of alleles may be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. Conclusions: A Genome-wide expression analysis demonstrated that SsMYB genes were involved in stem development and stress response. This study largely contributed to understanding the extent to which MYB transcription factors investigate regulatory mechanisms and functional divergence in sugarcane.


2016 ◽  
Vol 35 (6) ◽  
pp. 1385-1396 ◽  
Author(s):  
Fei Gao ◽  
Hai-Xia Zhao ◽  
Hui-Peng Yao ◽  
Cheng-Lei Li ◽  
Hui Chen ◽  
...  

2016 ◽  
Vol 42 (2) ◽  
pp. 295
Author(s):  
Ai-Li YU ◽  
Jin-Feng ZHAO ◽  
Gao-Hong WANG ◽  
Yan-Wei DU ◽  
Yan-Fang LI ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sen Lin ◽  
Rajesh K. Singh ◽  
Moehninsi ◽  
Duroy A. Navarre

AbstractFlavonols and other phenylpropanoids protect plants from biotic and abiotic stress and are dietarily desirable because of their health-promoting properties. The ability to develop new potatoes (Solanum tuberosum) with optimal types and amounts of phenylpropanoids is limited by lack of knowledge about the regulatory mechanisms. Exogenous sucrose increased flavonols, whereas overexpression of the MYB StAN1 induced sucrolytic gene expression. Heterologous StAN1 protein bound promoter fragments from sucrolytic genes (SUSY1 and INV1). Two additional MYBs and one microRNA were identified that regulated potato flavonols. Overexpression analysis showed MYB12A and C increased amounts of flavonols and other phenylpropanoids. Endogenous flavonol amounts in light-exposed organs were much higher those in the dark. Expression levels of StMYB12A and C were high in flowers but low in tubers. Transient overexpression of miR858 altered potato flavonol metabolism. Endogenous StmiR858 expression was much lower in flowers than leaves and correlated with flavonol amounts in these organs. Collectively, these findings support the hypothesis that sucrose, MYBs, and miRNA control potato phenylpropanoid metabolism in a finely tuned manner that includes a feedback loop between sucrose and StAN1. These findings will aid in the development of potatoes with phenylpropanoid profiles optimized for crop performance and human health.


Genome ◽  
2017 ◽  
Vol 60 (10) ◽  
pp. 797-814 ◽  
Author(s):  
Ali Hajiebrahimi ◽  
Hajar Owji ◽  
Shiva Hemmati

R2R3-MYB transcription factors (TFs) have been shown to play important roles in plants, including in development and in various stress conditions. Phylogenetic analysis showed the presence of 249 R2R3-MYB TFs in Brassica napus, called BnaR2R3-MYB TFs, clustered into 38 clades. BnaR2R3-MYB TFs were distributed on 19 chromosomes of B. napus. Sixteen gene clusters were identified. BnaR2R3-MYB TFs were characterized by motif prediction, gene structure analysis, and gene ontology. Evolutionary analysis revealed that BnaR2R3-MYB TFs are mainly formed as a result of whole-genome duplication. Orthologs and paralogs of BnaR2R3-MYB TFs were identified in B. napus, B. rapa, B. oleracea, and Arabidopsis thaliana using synteny-based methods. Purifying selection was pervasive within R2R3-MYB TFs. Kn/Ks values lower than 0.3 indicated that BnaR2R3-MYB TFs are being functionally converged. The role of gene conversion in the formation of BnaR2R3-MYB TFs was significant. Cis-regulatory elements in the upstream regions of BnaR2R3-MYB genes, miRNA targeting BnaR2R3MYB TFs, and post translational modifications were identified. Digital expression data revealed that BnaR2R3-MYB genes were highly expressed in the roots and under high salinity treatment after 24 h. BnaMYB21, BnaMYB141, and BnaMYB148 have been suggested for improving salt-tolerant B. napus. BnaR2R3-MYB genes were mostly up regulated on the 14th day post inoculation with Leptosphaeria biglobosa and L. maculan. BnaMYB150 is a candidate for increased tolerance to Leptospheria in B. napus.


Sign in / Sign up

Export Citation Format

Share Document