scholarly journals Response of soybean to soil waterlogging associated with iron excess in the reproductive stage

2020 ◽  
Vol 26 (8) ◽  
pp. 1635-1648
Author(s):  
Allan de Marcos Lapaz ◽  
Liliane Santos de Camargos ◽  
Camila Hatsu Pereira Yoshida ◽  
Ana Carolina Firmino ◽  
Paulo Alexandre Monteiro de Figueiredo ◽  
...  
2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Made Pharmawati ◽  
Ni Nyoman Wirasiti ◽  
Luh Putu Wrasiati

Abstrak Cekaman kekeringan merupakan faktor pembatas penting bagi pertumbuhan dan produktivitas tanaman termasuk padi.      Penelitian ini bertujuan menganalisis respon padi IR64 terhadap cekaman kekeringan dengan pemberian polietilen glikol (PEG) pada fase reproduktif.  Penelitian juga bertujuan menganalisis ekspresi gen aquaporin akibat cekaman kekeringan.  Bibit padi ditanam dalam pot dan perlakuan PEG dengan konsentrasi 108g/L (-0.25MPa) dan 178g/L (-0.52 MPa) diberikan saat munculnya panikula. Perlakuan diberikan selama 2 minggu, kemudian tanaman disiram kembali.  Ekspresi gen diamati pada akhir perlakuan dengan semi kuantitatif real time PCR.  Ekstraksi RNA menggunakan RNeasy plant mini kit, sedangkan sintesis cDNA menggunakan Transcriptor First Strand cDNA Kit.  Hasil penelitian menunjukkan bahwa jumlah malai dan berat total malai berkurang akibat cekaman kekeringan.  Persentase gabah kosong mencapai 84,6% pada perlakuan PEG-0,52 MPa, sedangkan pada perlakuan PEG -0,25 MPa persentase gabah kosong sebesar 67,8%.  Pada kontrol persentase gabah kosong adalah 10,3%.  Ekspresi gen OsPIP2;7 sedikit menurun pada perlakuan PEG -0,52 MPa.Kata kunci: ekspresi gen, IR64, kekeringan, padi, PEG  Abstract Drought stress is one of the limiting factors of plant growth and productivity including rice.  The aim of this study was to analyze responses of IR64 rice to polyethylene glycol (PEG)-induced-drought stress at the reproductive stage.  This study also aimed to analyze the expression of aquaporin under drought stress.  Rice seedlings were grown in pot system and PEG treatment at concentration of -0.25MPa (108g/L) and -0.52 MPa (178g/L) were given when the panicles arose.  Treatments were conducted for 2 weeks, after that the plants were rewatered.  Gene expression was evaluated at the end of PEG treatment using semi quantitative real time PCR. RNA was extracted using RNeasy plant mini kit, while cDNA synthesis was done using Transcriptor First Strand cDNA Kit.  The results showed that the number and weight of rice ear were less in plant treated with PEG than in control.  The percentage of empty rice grain reached 84.6% at PEG -0.52 MPa, while at PEG -0.25 MPa the percentage of empty grain was 67.8%.  In control plant, the percentage of empty grain was 10.3%.  Drought stress did not alter the expression of OsPIP2;7.  Keywords: drought, gene expression, IR64, PEG, rice


2019 ◽  
Vol 55 (No. 2) ◽  
pp. 61-69 ◽  
Author(s):  
Dorsaf Allel ◽  
Anis BenAmar ◽  
Mounawer Badri ◽  
Chedly Abdelly

Soil salinity is one of the main factors limiting cereal productivity in worldwide agriculture. Exploitation of natural variation in local barley germplasm is an effective approach to overcome yield losses. Three gene pools of North African Hordeum vulgare L. grown in Tunisia, Algeria and Egypt were evaluated at the reproductive stage under control and saline conditions. Assessment of stress tolerance was monitored using morphological, yield-related traits and phenological parameters of reproductive organs showing significant genetic variation. High heritability and positive relationships were found suggesting that some traits associated with salt tolerance could be used as selection criteria. The phenotypic correlations revealed that vegetative traits including shoot biomass, tiller number and leaf number along with yield-related traits such as spike number, one spike dry weight, grain number/plant and grain number/spike were highly positively correlated with grain yield under saline conditions. Hence, these traits can be used as reliable selection criteria to improve barley grain yield. Keeping a higher shoot biomass and longer heading and maturity periods as well as privileged filling ability might contribute to higher grain production in barley and thus could be potential target traits in barley crop breeding toward improvement of salinity tolerance. Multiple selection indices revealed that salt tolerance trait index provided a better discrimination of barley landraces allowing selection of highly salt-tolerant and highly productive genotypes under severe salinity level. Effective evaluation of salt tolerance requires an integration of selection indices to successfully identify and characterize salt tolerant lines required for valuable exploitation in the management of salt-affected areas.  


2021 ◽  
Vol 100 (2) ◽  
Author(s):  
Mostafa Ahmadizadeh ◽  
Nadali Babaeian-Jelodar ◽  
Ghasem Mohammadi-Nejad ◽  
Nadali Bagheri ◽  
Rakesh Kumar Singh

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Priyanka Dwivedi ◽  
Naleeni Ramawat ◽  
Gaurav Dhawan ◽  
Subbaiyan Gopala Krishnan ◽  
Kunnummal Kurungara Vinod ◽  
...  

Reproductive stage drought stress (RSDS) is detrimental for rice, which affects its productivity as well as grain quality. In the present study, we introgressed two major quantitative trait loci (QTLs), namely, qDTY2.1 and qDTY3.1, governing RSDS tolerance in a popular high yielding non-aromatic rice cultivar, Pusa 44, through marker-assisted backcross breeding (MABB). Pusa 44 is highly sensitive to RSDS, which restricts its cultivation across drought-prone environments. Foreground selection was carried out using markers, RM520 for qDTY3.1 and RM 521 for qDTY2.1. Background selection was achieved with 97 polymorphic SSR markers in tandem with phenotypic selection to achieve faster recurrent parent genome (RPG) recovery. Three successive backcrosses followed by three selfings aided RPG recoveries of 98.6% to 99.4% among 31 near isogenic lines (NILs). Fourteen NILs were found to be significantly superior in yield and grain quality under RSDS with higher drought tolerance efficiency (DTE) than Pusa 44. Among these, the evaluation of two promising NILs in the multilocational trial during Kharif 2019 showed that they were significantly superior to Pusa 44 under reproductive stage drought stress, while performing on par with Pusa 44 under normal irrigated conditions. These di-QTL pyramided drought-tolerant NILs are in the final stages of testing the All India Coordinated Rice Improvement Project varietal trials for cultivar release. Alternately, the elite drought-tolerant Pusa 44 NILs will serve as an invaluable source of drought tolerance in rice improvement.


2021 ◽  
Vol 33 (8) ◽  
pp. 101599
Author(s):  
Muhammad Ishaq Asif Rehmani ◽  
Chengqiang Ding ◽  
Ganghua Li ◽  
Syed Tahir Ata-Ul-Karim ◽  
Adel Hadifa ◽  
...  

Genetics ◽  
2005 ◽  
Vol 172 (2) ◽  
pp. 1213-1228 ◽  
Author(s):  
Bing Yue ◽  
Weiya Xue ◽  
Lizhong Xiong ◽  
Xinqiao Yu ◽  
Lijun Luo ◽  
...  

2021 ◽  
Vol 22 ◽  
Author(s):  
Ratna Rani Majumder ◽  
Nitika Sandhu ◽  
Shailesh Yadav ◽  
Margaret Catolos ◽  
Ma. Teresa Sta. Cruz ◽  
...  

Aims: The aim of the present study was to evaluate the performance of ‘high’-‘low’ yielding pyramided lines (PLs) with the same combinations of qDTYs in Samba Mahsuri, MR219 and IR64-Sub1 genetic backgrounds and understand the genetic interactions of QTL and with genetic background affecting grain yield. Background: Epistasis regulates the expression of traits governed by several major/minor genes/QTL. Multiple pyramided lines (PLs) with the same grain yield QTL (qDTYs) combinations but possessing grain yield variability under different levels of reproductive stage drought stress were identified in different rice genetic backgrounds at International Rice Research Institute (IRRI). Objectives: The objectives of the present study were to evaluate the performance pyramided lines (PLs) with drought QTL in the backgrounds of Samba Mahsuri, MR219 and IR64-Sub1 under reproductive stage drought stress (RS) and NS (non-stress) conditions ii) to understand the effect of epistatic interactions of qDTYs and with genetic background on GY under the differential level of stress iii) to identify the promising drought-tolerant lines with high yield under drought and higher background recovery in different genetic backgrounds. Results: Several digenic interactions were found in different genetic backgrounds, 13 interactions in Samba Mahsuri, 11 in MR219 and 20 in IR64-Sub1 backgrounds. Among all digenic interactions, one QTL × QTL interaction, 17 QTL × background and 26 background × background interactions resulted in GY reduction in low yielding PLs in different genetic backgrounds under LSS or LMS. Negative interaction of qDTY3.1, qDTY4.1 and qDTY9.1 with background markers and background × background interactions caused up to 15% GY reduction compared to the high yielding PLs under LMS in the Samba Mahsuri PLs. In MR219 PLs, the negative interaction of qDTY2.2, qDTY3.2, qDTY4.1 and qDTY12.1 with the background marker interval RM314-RM539, RM273-RM349 and RM445-RM346, RM473D-RM16, respectively resulted in 52% GY reduction compared to the high yielding PLs under LSS. In IR64-Sub1 PLs, qDTY6.1 interacted with background loci at RM16-RM135, RM228-RM333, RM202-RM287 and RM415-RM558A marker interval under LSS; and at RM475-RM525 marker interval under LMS, causing GY reduction to 58% compared to the high yielding PLs. Conclusion: High yielding PLs in Samba Mahsuri (IR 99734:1-33-69-1-22-6), MR219 (IR 99784-156-87-2-4-1) and IR64-Sub1 (IR 102784:2-89-632-2-1-2) backgrounds without any negative interactions were identified. The identified selected promising PLs may be used as potential drought-tolerant donors or may be released as varieties for drought-prone ecosystems in different countries. Methods: The experiments were conducted in 2015DS (dry season), 2015WS (wet season) and 2017 DS at IRRI, Los Baños, Philippines, in a transplanted lowland ecosystem under lowland severe stress (LSS), moderate lowland stress (LMS) and lowland non-stress (LNS). The experiments were laid out in alpha lattice design with two replications.


Sign in / Sign up

Export Citation Format

Share Document