scholarly journals Context-Enhanced Human-Robot Interaction: Exploring the Role of System Interactivity and Multimodal Stimuli on the Engagement of People with Dementia

Author(s):  
Yuan Feng ◽  
Giulia Perugia ◽  
Suihuai Yu ◽  
Emilia I. Barakova ◽  
Jun Hu ◽  
...  

AbstractEngaging people with dementia (PWD) in meaningful activities is the key to promote their quality of life. Design towards a higher level of user engagement has been extensively studied within the human-computer interaction community, however, few extend to PWD. It is generally considered that increased richness of experiences can lead to enhanced engagement. Therefore, this paper explores the effects of rich interaction in terms of the role of system interactivity and multimodal stimuli by engaging participants in context-enhanced human-robot interaction activities. The interaction with a social robot was considered context-enhanced due to the additional responsive sensory feedback from an augmented reality display. A field study was conducted in a Dutch nursing home with 16 residents. The study followed a two by two mixed factorial design with one within-subject variable - multimodal stimuli - and one between-subject variable - system interactivity. A mixed method of video coding analysis and observational rating scales was adopted to assess user engagement comprehensively. Results disclose that when additional auditory modality was included besides the visual-tactile stimuli, participants had significantly higher scores on attitude, more positive behavioral engagement during activity, and a higher percentage of communications displayed. The multimodal stimuli also promoted social interaction between participants and the facilitator. The findings provide sufficient evidence regarding the significant role of multimodal stimuli in promoting PWD’s engagement, which could be potentially used as a motivation strategy in future research to improve emotional aspects of activity-related engagement and social interaction with the human partner.

2009 ◽  
Vol 6 (3-4) ◽  
pp. 369-397 ◽  
Author(s):  
Kerstin Dautenhahn ◽  
Chrystopher L. Nehaniv ◽  
Michael L. Walters ◽  
Ben Robins ◽  
Hatice Kose-Bagci ◽  
...  

This paper provides a comprehensive introduction to the design of the minimally expressive robot KASPAR, which is particularly suitable for human–robot interaction studies. A low-cost design with off-the-shelf components has been used in a novel design inspired from a multi-disciplinary viewpoint, including comics design and Japanese Noh theatre. The design rationale of the robot and its technical features are described in detail. Three research studies will be presented that have been using KASPAR extensively. Firstly, we present its application in robot-assisted play and therapy for children with autism. Secondly, we illustrate its use in human–robot interaction studies investigating the role of interaction kinesics and gestures. Lastly, we describe a study in the field of developmental robotics into computational architectures based on interaction histories for robot ontogeny. The three areas differ in the way as to how the robot is being operated and its role in social interaction scenarios. Each will be introduced briefly and examples of the results will be presented. Reflections on the specific design features of KASPAR that were important in these studies and lessons learnt from these studies concerning the design of humanoid robots for social interaction will also be discussed. An assessment of the robot in terms of utility of the design for human–robot interaction experiments concludes the paper.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3771 ◽  
Author(s):  
Yuan Feng ◽  
Emilia I. Barakova ◽  
Suihuai Yu ◽  
Jun Hu ◽  
G. W. Matthias Rauterberg

The well-being of people with dementia (PWD) living in long-term care facilities is hindered due to disengagement and social isolation. Animal-like social robots are increasingly used in dementia care as they can provide companionship and engage PWD in meaningful activities. While most previous human–robot interaction (HRI) research studied engagement independent from the context, recent findings indicate that the context of HRI sessions has an impact on user engagement. This study aims to explore the effects of contextual interactions between PWD and a social robot embedded in the augmented responsive environment. Three experimental conditions were compared: reactive context-enhanced robot interaction; dynamic context-enhanced interaction with a static robot; a control condition with only the dynamic context presented. Effectiveness evaluations were performed with 16 participants using four observational rating scales on observed engagement, affective states, and apathy related behaviors. Findings suggested that the higher level of interactivity of a social robot and the interactive contextualized feedback helped capture and maintain users’ attention during engagement; however, it did not significantly improve their positive affective states. Additionally, the presence of either a static or a proactive robot reduced apathy-related behaviors by facilitating purposeful activities, thus, motivating behavioral engagement.


2020 ◽  
Author(s):  
Agnieszka Wykowska ◽  
Jairo Pérez-Osorio ◽  
Stefan Kopp

This booklet is a collection of the position statements accepted for the HRI’20 conference workshop “Social Cognition for HRI: Exploring the relationship between mindreading and social attunement in human-robot interaction” (Wykowska, Perez-Osorio & Kopp, 2020). Unfortunately, due to the rapid unfolding of the novel coronavirus at the beginning of the present year, the conference and consequently our workshop, were canceled. On the light of these events, we decided to put together the positions statements accepted for the workshop. The contributions collected in these pages highlight the role of attribution of mental states to artificial agents in human-robot interaction, and precisely the quality and presence of social attunement mechanisms that are known to make human interaction smooth, efficient, and robust. These papers also accentuate the importance of the multidisciplinary approach to advance the understanding of the factors and the consequences of social interactions with artificial agents.


Author(s):  
Ruth Stock-Homburg

AbstractKnowledge production within the interdisciplinary field of human–robot interaction (HRI) with social robots has accelerated, despite the continued fragmentation of the research domain. Together, these features make it hard to remain at the forefront of research or assess the collective evidence pertaining to specific areas, such as the role of emotions in HRI. This systematic review of state-of-the-art research into humans’ recognition and responses to artificial emotions of social robots during HRI encompasses the years 2000–2020. In accordance with a stimulus–organism–response framework, the review advances robotic psychology by revealing current knowledge about (1) the generation of artificial robotic emotions (stimulus), (2) human recognition of robotic artificial emotions (organism), and (3) human responses to robotic emotions (response), as well as (4) other contingencies that affect emotions as moderators.


Author(s):  
Mark Tee Kit Tsun ◽  
Lau Bee Theng ◽  
Hudyjaya Siswoyo Jo ◽  
Patrick Then Hang Hui

This chapter summarizes the findings of a study on robotics research and application for assisting children with disabilities between the years 2009 and 2013. The said disabilities include impairment of motor skills, locomotion, and social interaction that is commonly attributed to children suffering from Autistic Spectrum Disorders (ASD) and Cerebral Palsy (CP). As opposed to assistive technologies for disabilities that largely account for restoration of physical capabilities, disabled children also require dedicated rehabilitation for social interaction and mental health. As such, the breadth of this study covers existing efforts in rehabilitation of both physical and socio-psychological domains, which involve Human-Robot Interaction. Overviewed topics include assisted locomotion training, passive stretching and active movement rehabilitation, upper-extremity motor function, social interactivity, therapist-mediators, active play encouragement, as well as several life-long assistive robotics in current use. This chapter concludes by drawing attention to ethical and adoption issues that may obstruct the field's effectiveness.


2019 ◽  
Vol 374 (1771) ◽  
pp. 20180033 ◽  
Author(s):  
Birgit Rauchbauer ◽  
Bruno Nazarian ◽  
Morgane Bourhis ◽  
Magalie Ochs ◽  
Laurent Prévot ◽  
...  

We present a novel functional magnetic resonance imaging paradigm for second-person neuroscience. The paradigm compares a human social interaction (human–human interaction, HHI) to an interaction with a conversational robot (human–robot interaction, HRI). The social interaction consists of 1 min blocks of live bidirectional discussion between the scanned participant and the human or robot agent. A final sample of 21 participants is included in the corpus comprising physiological (blood oxygen level-dependent, respiration and peripheral blood flow) and behavioural (recorded speech from all interlocutors, eye tracking from the scanned participant, face recording of the human and robot agents) data. Here, we present the first analysis of this corpus, contrasting neural activity between HHI and HRI. We hypothesized that independently of differences in behaviour between interactions with the human and robot agent, neural markers of mentalizing (temporoparietal junction (TPJ) and medial prefrontal cortex) and social motivation (hypothalamus and amygdala) would only be active in HHI. Results confirmed significantly increased response associated with HHI in the TPJ, hypothalamus and amygdala, but not in the medial prefrontal cortex. Future analysis of this corpus will include fine-grained characterization of verbal and non-verbal behaviours recorded during the interaction to investigate their neural correlates. This article is part of the theme issue ‘From social brains to social robots: applying neurocognitive insights to human–robot interaction'.


Philosophies ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 11 ◽  
Author(s):  
Frank Förster

In this article, I assess an existing language acquisition architecture, which was deployed in linguistically unconstrained human–robot interaction, together with experimental design decisions with regard to their enactivist credentials. Despite initial scepticism with respect to enactivism’s applicability to the social domain, the introduction of the notion of participatory sense-making in the more recent enactive literature extends the framework’s reach to encompass this domain. With some exceptions, both our architecture and form of experimentation appear to be largely compatible with enactivist tenets. I analyse the architecture and design decisions along the five enactivist core themes of autonomy, embodiment, emergence, sense-making, and experience, and discuss the role of affect due to its central role within our acquisition experiments. In conclusion, I join some enactivists in demanding that interaction is taken seriously as an irreducible and independent subject of scientific investigation, and go further by hypothesising its potential value to machine learning.


Sign in / Sign up

Export Citation Format

Share Document