Mechanism and stability evaluation of goaf ground subsidence in the third mining area in Gong Changling District, China

2014 ◽  
Vol 8 (2) ◽  
pp. 639-646 ◽  
Author(s):  
Youhong Sun ◽  
Xiangding Zhang ◽  
Wenfei Mao ◽  
Lina Xu
2020 ◽  
Vol 10 (18) ◽  
pp. 6623
Author(s):  
Xianfeng Tan ◽  
Bingzhong Song ◽  
Huaizhi Bo ◽  
Yunwei Li ◽  
Meng Wang ◽  
...  

Underground coal mining-induced ground subsidence (or major ground vertical settlement) is a major concern to the mining industry, government and people affected. Based on the probability integral method, this paper presents a new ground subsidence prediction method for predicting irregularly shaped coal mining area extraction-induced ground subsidence. Firstly, the Delaunay triangulation method is used to divide the irregularly shaped mining area into a series of triangular extraction elements. Then, the extraction elements within the calculation area are selected. Finally, the Monte Carlo method is used to calculate extraction element-induced ground subsidence. The proposed method was tested by two experimental data sets: the simulation data set and direct leveling-based subsidence observations. The simulation results show that the prediction error of the proposed method is proportional to mesh size and inversely proportional to the amount of generated random points within the auxiliary domain. In addition, when the mesh size is smaller than 0.5 times the minimum deviation of the inflection point of the mining area, and the amount of random points within an auxiliary domain is greater than 800 times the area of the extraction element, the difference between the proposed method-based subsidence predictions and the traditional probability integral method-based subsidence predictions is marginal. The measurement results show that the root-mean-square error of the proposed method-based subsidence predictions is smaller than 3 cm, the average of absolute deviations of the proposed method-based subsidence predictions is 2.49 cm, and the maximum absolute deviation is 4.05 cm, which is equal to 0.75% of the maximum direct leveling-based subsidence observation.


2011 ◽  
Vol 383-390 ◽  
pp. 2201-2205
Author(s):  
Xin Xi Liu ◽  
Xue Zhi Wang

Analysis on the characters of ground subsidence of Yangjiaping mining area, with same excavation depth and recovery coefficient, the numerical simulations to nonlinear large deformation using finite-difference method(FLAC) are achieved on the different strip extraction schemes that adopted different mining and reservation width. The result indicates that the subsidence values and horizontal deformation increases with the increasing of the strip extraction width on condition of the same recovery rate. Based on probability density function (PDF) method, the relationship of the coal pillar width, the mining width and ground deformation is acquired, which is some useful reference for using the strip extraction method to control the surface movement and deformation.


2018 ◽  
Author(s):  
Zhang Jin

Geohazards in mining areas are mainly ground subsidence, slope landslides and ground cracks, surface cover degradation and environmental ecological pattern destruction. The classification and rank of terrain slope and the feature area extraction of the slope are the important content for the correlation analysis with the geohazards. The slope classification and rank index system for soil and water conservation, land use and man-made ground disasters was analyzed. According to the characteristics of open pit and underground associated mining area, we comprehensively analyzed the spatial correlation between different ground disaster and terrain features and landform types, and propose a new slope ranking index, dividing slope zones and forming slope classification map. Especially slope area of 35-45 degrees and more than 45 degrees was extracted, and the relationship between regional geohazards and slope zone was analyzed. The application of terrestrial laser scanning technology to establish open-pit high precision digital elevation model, extraction of slope, slope type, gully density characteristic factor, topography factor data sets are established, and correlation analysis, to enhance disaster information content.


2022 ◽  
Vol 14 (2) ◽  
pp. 290
Author(s):  
Jia Liu ◽  
Fengshan Ma ◽  
Guang Li ◽  
Jie Guo ◽  
Yang Wan ◽  
...  

Ground subsidence is a common geological phenomenon occurring in mining areas. As an important Chinese gold mine, Sanshandao Gold Mine has a mining history of 25 years, with remarkable ground subsidence deformation. Mining development, life security, property security and ecological protection all require comprehension of the ground subsidence characteristics and evolution in the mining area. In this study, the mining subsidence phenomenon of the Sanshandao Gold Mine was investigated and analyzed based on Persistent Scatterer Interferometry (PSI) and small baseline subset (SBAS). The SAR (synthetic aperture radar) images covering the study area were acquired by the Sentinel-1A satellite between 2018 and 2021; 54 images (between 22 February 2018 and 25 May 2021) were processed using the PSI technique and 24 images (between 11 April 2018 and 12 July 2021) were processed using the SBAS technique. In addition, GACOS (generic atmospheric correction online service) data were adopted to eliminate the atmospheric error in both kinds of data processing. The interferometric synthetic aperture radar (InSAR) results showed a basically consistent subsidence area and a similar subsidence pattern. Both InSAR results indicated that the maximum LOS (line of sight) subsidence velocity is about 49 mm/year. The main subsidence zone is situated in the main mining area, extending in the northwest and southeast directions. According to the subsidence displacement of several representative sites in the mining area, we found that the PSI result has a higher subsidence displacement value compared to the SBAS result. Mining activities were accompanied by ground subsidence in the mining area: the ground subsidence phenomenon is exacerbated by the increasing mining quantity. Temporally, the mining subsidence lags behind the increase in mining quantity by about three months. In summary, the mining area has varying degrees of ground subsidence, monitored by two reliable time-series InSAR techniques. Further study of the subsidence mechanism is necessary to forecast ground subsidence and instruct mining activities.


2020 ◽  
Vol 12 (23) ◽  
pp. 3884
Author(s):  
Yuanping Xia ◽  
Yunjia Wang

The determination of the depth and boundary of the goaf is of great significance for the detection of illegal mining. However, determining the current location of unknown goafs mainly relies on low-efficiency, time-consuming, and labor-intensive physical detection methods such as geomagnetic field changes. Due to their large coverage and high degree of automation, research on remote sensing methods has been conducted to locate mining activities by monitoring surface deformation. This paper proposes a method that relies on the principle of the probability integration method (PIM) and on synthetic aperture radar interferometry (InSAR) to retrieve the location of an underground goaf. First, the relationship between ground subsidence and the location of the mined-out area was established according to PIM; then, the location of the mined-out area was obtained by the surface deformation acquired by InSAR. The proposed method does not rely on complex nonlinear models and has complete parameters; therefore, it has higher engineering application value. A test site in the Fengfeng mining area and 11 Radarsat-2 images were used to verify the proposed method. The experimental results showed that the average relative error of the proposed method is 6.35%, which is 27.56% higher than that of similar algorithms based on complex nonlinear models. Compared to algorithms that ignore the coal seam dip, the accuracy is improved to 98.27%.


2013 ◽  
Vol 798-799 ◽  
pp. 276-279
Author(s):  
Ying Chang Wang ◽  
Di Luo ◽  
Qiang Tang ◽  
Jie Hu

According to the production requirements and arrangements of 1930 coal, Third District pedestrian mountains and Third District return airway were communicated. And the ways that adding appropriate resistance in the mining area return air route, continue to increase resistance in the +1944m horizontal transport Shimen, taking iron damper instead of wood damper, adjusting the Third District wind turbine operating parameters, removing the temporary damper of the Second District 6# main transport roadway and so on were integrated optimization. The Third District ventilation system was formed. Meanwhile the ventilation system design experience and recommendation were summarized. The mine ventilation system would be stable and reliable and mine daily production would be safety.


2015 ◽  
Vol 36 (23) ◽  
pp. 5790-5810 ◽  
Author(s):  
Zhengjia Zhang ◽  
Chao Wang ◽  
Yixian Tang ◽  
Hong Zhang ◽  
Qiaoyan Fu

Sign in / Sign up

Export Citation Format

Share Document