Hydrothermal alteration mapping and structural features in the Guelma basin (Northeastern Algeria): contribution of Landsat-8 data

2019 ◽  
Vol 12 (3) ◽  
Author(s):  
Baya Nait Amara ◽  
Djamal Eddine Aissa ◽  
Saïd Maouche ◽  
Massinissa Braham ◽  
Djamel Machane ◽  
...  
2016 ◽  
Vol 67 (1) ◽  
pp. 72-88 ◽  
Author(s):  
Feizollah Masoumi ◽  
Taymour Eslamkish ◽  
Mehdi Honarmand ◽  
Ali Akbar Abkar

2017 ◽  
Vol 14 (6) ◽  
pp. 1461-1492 ◽  
Author(s):  
Laura A. Casella ◽  
Erika Griesshaber ◽  
Xiaofei Yin ◽  
Andreas Ziegler ◽  
Vasileios Mavromatis ◽  
...  

Abstract. Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite–calcite transition occurs via an interface-coupled dissolution–reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.


2017 ◽  
Vol 50 (3) ◽  
pp. 1596 ◽  
Author(s):  
A. Anifadi ◽  
Is. Parcharidis ◽  
O. Sykioti

In this study we use Landsat 8 OLI satellite imagery in order to identify and map alteration zones in Limnos island (N. Aegean, Greece). Pre-processing included sea and vegetation masking. In order to enhance spatial resolution, data fusion to 15m is performed. A lineament map is extracted from the panchromatic image that gives the general tectonic view of the island. The detection and mapping of alteration minerals is performed using specific band ratios and consequent composite images. The colour composite using bands 10, 11, 7 (RGB) show the spectral signature and general distribution of silica. Band ratios 6/7, 4/2, 6/5, reveal alteration zones containing iron oxides, clay alteration and ferrous minerals correspondingly. The aforementioned analysis has shown that hydrothermally alteration areas in Limnos are located in the west part of the island and at the Fakos Peninsula, Sardes, Roussopouli and Paradeisi hill. These areas are compared and validated with the reported field work. We conclude that hydrothermal alteration zones can indeed be detected and mapped using medium resolution satellite multispectral data. However, for the identification and mapping of specific types of rocks and minerals, a sensor with high spectral resolution is required. 


2021 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Bayu Raharja ◽  
Agung Setianto ◽  
Anastasia Dewi Titisari

Using remote sensing data for hydrothermal alteration mapping beside saving time and reducing  cost leads to increased accuracy. In this study, the result of multispectral remote sensing tehcniques has been compare for manifesting hydrothermal alteration in Kokap, Kulon Progo. Three multispectral images, including ASTER, Landsat 8, and Sentinel-2, were compared in order to find the highest overall accuracy using principle component analysis (PCA) and directed component analysis (DPC). Several subsets band combinations were used as PCA and DPC input to targeting the key mineral of alteration. Multispectral classification with the maximum likelihood algorithm was performed to map the alteration types based on training and testing data and followed by accuracy evaluation. Two alteration zones were succeeded to be mapped: argillic zone and propylitic zone. Results of these image classification techniques were compared with known alteration zones from previous study. DPC combination of band ratio images of 5:2 and 6:7 of Landsat 8 imagery yielded a classification accuracy of 56.4%, which was 5.05% and 10.13% higher than those of the ASTER and Sentinel-2 imagery. The used of DEM together with multispectral images was increase the accuracy of hydrothermal alteration mapping in the study area.


2019 ◽  
Vol 11 (20) ◽  
pp. 2430 ◽  
Author(s):  
Pour ◽  
Park ◽  
Park ◽  
Hong ◽  
Muslim ◽  
...  

Several regions in the High Arctic still lingered poorly explored for a variety of mineralization types because of harsh climate environments and remoteness. Inglefield Land is an ice-free region in northwest Greenland that contains copper-gold mineralization associated with hydrothermal alteration mineral assemblages. In this study, Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and WorldView-3 multispectral remote sensing data were used for hydrothermal alteration mapping and mineral prospecting in the Inglefield Land at regional, local, and district scales. Directed principal components analysis (DPCA) technique was applied to map iron oxide/hydroxide, Al/Fe-OH, Mg-Fe-OH minerals, silicification (Si-OH), and SiO2 mineral groups using specialized band ratios of the multispectral datasets. For extracting reference spectra directly from the Landsat-8, ASTER, and WorldView-3 (WV-3) images to generate fraction images of end-member minerals, the automated spectral hourglass (ASH) approach was implemented. Linear spectral unmixing (LSU) algorithm was thereafter used to produce a mineral map of fractional images. Furthermore, adaptive coherence estimator (ACE) algorithm was applied to visible and near-infrared and shortwave infrared (VINR + SWIR) bands of ASTER using laboratory reflectance spectra extracted from the USGS spectral library for verifying the presence of mineral spectral signatures. Results indicate that the boundaries between the Franklinian sedimentary successions and the Etah metamorphic and meta-igneous complex, the orthogneiss in the northeastern part of the Cu-Au mineralization belt adjacent to Dallas Bugt, and the southern part of the Cu-Au mineralization belt nearby Marshall Bugt show high content of iron oxides/hydroxides and Si-OH/SiO2 mineral groups, which warrant high potential for Cu-Au prospecting. A high spatial distribution of hematite/jarosite, chalcedony/opal, and chlorite/epidote/biotite were identified with the documented Cu-Au occurrences in central and southwestern sectors of the Cu-Au mineralization belt. The calculation of confusion matrix and Kappa Coefficient proved appropriate overall accuracy and good rate of agreement for alteration mineral mapping. This investigation accomplished the application of multispectral/multi-sensor satellite imagery as a valuable and economical tool for reconnaissance stages of systematic mineral exploration projects in remote and inaccessible metallogenic provinces around the world, particularly in the High Arctic regions.


Sign in / Sign up

Export Citation Format

Share Document