scholarly journals Experimental diagenesis: insights into aragonite to calcite transformation of <i>Arctica islandica</i> shells by hydrothermal treatment

2017 ◽  
Vol 14 (6) ◽  
pp. 1461-1492 ◽  
Author(s):  
Laura A. Casella ◽  
Erika Griesshaber ◽  
Xiaofei Yin ◽  
Andreas Ziegler ◽  
Vasileios Mavromatis ◽  
...  

Abstract. Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. In generating their mineralised hard parts, most marine invertebrates produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism the physiological conditions, which were present during biomineralisation, are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 and 175 °C, with the main focus on 100 and 175 °C, reaction durations between 1 and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days. During hydrothermal alteration at 100 °C for 28 days most but not the entire biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments up to 174 °C, there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 µm, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to 1 mm after 7 days of alteration. Aragonite is metastable at all applied conditions. Only a small bulk thermodynamic driving force exists for the transition to calcite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 to ca. 170 °C or, additionally, to the presence of magnesium. Correspondingly, in Mg2+-bearing solutions the newly formed calcite crystals are larger than in Mg2+-free solutions. Overall, the aragonite–calcite transition occurs via an interface-coupled dissolution–reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explaining why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.

2016 ◽  
Author(s):  
Laura A. Casella ◽  
Erika Griesshaber ◽  
Xiaofei Yin ◽  
Andreas Ziegler ◽  
Vasileios Mavromatis ◽  
...  

Abstract. Biomineralised hard parts form the most important physical fossil record of past environmental conditions. However, living organisms are not in thermodynamic equilibrium with their environment and create local chemical compartments within their bodies where physiologic processes such as biomineralisation take place. Generating their mineralized hard parts most marine invertebrates thus produce metastable aragonite rather than the stable polymorph of CaCO3, calcite. After death of the organism, the physiological conditions which were present during biomineralisation are not sustained any further and the system moves toward inorganic equilibrium with the surrounding inorganic geological system. Thus, during diagenesis the original biogenic structure of aragonitic tissue disappears and is replaced by inorganic structural features. In order to understand the diagenetic replacement of biogenic aragonite to non-biogenic calcite, we subjected Arctica islandica mollusc shells to hydrothermal alteration experiments. Experimental conditions were between 100 °C and 175 °C with reaction durations between one and 84 days, and alteration fluids simulating meteoric and burial waters, respectively. Detailed microstructural and geochemical data were collected for samples altered at 100 °C (and at 0.1 MPa pressure) for 28 days and for samples altered at 175 °C (and at 0.9 MPa pressure) for 7 and 84 days, respectively. During hydrothermal alteration at 100 °C for 28 days, most but not all of the biopolymer matrix was destroyed, while shell aragonite and its characteristic microstructure was largely preserved. In all experiments below 175 °C there are no signs of a replacement reaction of shell aragonite to calcite in X-ray diffraction bulk analysis. At 175 °C the replacement reaction started after a dormant time of 4 days, and the original shell microstructure was almost completely overprinted by the aragonite to calcite replacement reaction after 10 days. Newly formed calcite nucleated at locations which were in contact with the fluid, at the shell surface, in the open pore system, and along growth lines. In the experiments with fluids simulating meteoric water, calcite crystals reached sizes up to 200 micrometres, while in the experiments with Mg-containing fluids the calcite crystals reached sizes up to one mm after 7 days of alteration. Aragonite is metastable at all applied conditions. A small bulk thermodynamic driving force exists for the transition to calcite, which is augmented by stresses induced by organic matrix and interface energies related to the nanoparticulate architecture of the biogenic aragonite. We attribute the sluggish replacement reaction to the inhibition of calcite nucleation in the temperature window from ca. 50 °C to ca. 170 °C, or, additionally, to the presence of magnesium. Correspondingly, in Mg2&amp;plus;-bearing solutions the newly formed calcite crystals are larger than in Mg2&amp;plus;-free solutions. Overall, the aragonite-calcite transition occurs via an interface-coupled dissolution-reprecipitation mechanism, which preserves morphologies down to the sub-micrometre scale and induces porosity in the newly formed phase. The absence of aragonite replacement by calcite at temperatures lower than 175 °C contributes to explain why aragonitic or bimineralic shells and skeletons have a good potential of preservation and a complete fossil record.


2018 ◽  
Author(s):  
Laura A. Casella ◽  
Sixin He ◽  
Erika Griesshaber ◽  
Lourdes Fernández-Díaz ◽  
Elizabeth M. Harper ◽  
...  

Abstract. The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. A correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies (Casella et al., 2017) have shown that replacement of biogenic carbonate by inorganic calcite occurs via an interface coupled dissolution–reprecipitation mechanism. Furthermore, for a comprehensive assessment of alteration, structural changes have to be assessed on the nanoscale as well, which documents the replacement of pristine nanoparticulate calcite by diagenetic nanorhombohedral calcite (Casella et al., 2018a, b). In the present contribution we investigated six different modern biogenic carbonate microstructures for their behaviour under hydrothermal alteration in order to assess their potential to withstand diagenetic overprint and to test the integrity of their preservation in the fossil record. For each microstructure (a) the evolution of biogenic aragonite and calcite replacement by inorganic calcite was examined, (b) distinct carbonate mineral formation steps on the micrometre scale were highlighted, (c) microstructural changes at different stages of alteration were explored, and (d) statistical analysis of differences in basic mineral unit dimensions in pristine and altered skeletons was performed. The latter analysis enables an unequivocal determination of the degree of diagenetic overprint and discloses information especially about low degrees of hydrothermal alteration.


2021 ◽  
Vol 11 ◽  
Author(s):  
Antonio Barajas-Martínez ◽  
Elizabeth Ibarra-Coronado ◽  
Martha Patricia Sierra-Vargas ◽  
Ivette Cruz-Bautista ◽  
Paloma Almeda-Valdes ◽  
...  

Currently, research in physiology focuses on molecular mechanisms underlying the functioning of living organisms. Reductionist strategies are used to decompose systems into their components and to measure changes of physiological variables between experimental conditions. However, how these isolated physiological variables translate into the emergence -and collapse- of biological functions of the organism as a whole is often a less tractable question. To generate a useful representation of physiology as a system, known and unknown interactions between heterogeneous physiological components must be taken into account. In this work we use a Complex Inference Networks approach to build physiological networks from biomarkers. We employ two unrelated databases to generate Spearman correlation matrices of 81 and 54 physiological variables, respectively, including endocrine, mechanic, biochemical, anthropometric, physiological, and cellular variables. From these correlation matrices we generated physiological networks by selecting a p-value threshold indicating statistically significant links. We compared the networks from both samples to show which features are robust and representative for physiology in health. We found that although network topology is sensitive to the p-value threshold, an optimal value may be defined by combining criteria of stability of topological features and network connectedness. Unsupervised community detection algorithms allowed to obtain functional clusters that correlate well with current medical knowledge. Finally, we describe the topology of the physiological networks, which lie between random and ordered structural features, and may reflect system robustness and adaptability. Modularity of physiological networks allows to explore functional clusters that are consistent even when considering different physiological variables. Altogether Complex Inference Networks from biomarkers provide an efficient implementation of a systems biology approach that is visually understandable and robust. We hypothesize that physiological networks allow to translate concepts such as homeostasis into quantifiable properties of biological systems useful for determination and quantification of health and disease.


Author(s):  
D. F. Blake ◽  
L. F. Allard ◽  
D. R. Peacor

Echinodermata is a phylum of marine invertebrates which has been extant since Cambrian time (c.a. 500 m.y. before the present). Modern examples of echinoderms include sea urchins, sea stars, and sea lilies (crinoids). The endoskeletons of echinoderms are composed of plates or ossicles (Fig. 1) which are with few exceptions, porous, single crystals of high-magnesian calcite. Despite their single crystal nature, fracture surfaces do not exhibit the near-perfect {10.4} cleavage characteristic of inorganic calcite. This paradoxical mix of biogenic and inorganic features has prompted much recent work on echinoderm skeletal crystallography. Furthermore, fossil echinoderm hard parts comprise a volumetrically significant portion of some marine limestones sequences. The ultrastructural and microchemical characterization of modern skeletal material should lend insight into: 1). The nature of the biogenic processes involved, for example, the relationship of Mg heterogeneity to morphological and structural features in modern echinoderm material, and 2). The nature of the diagenetic changes undergone by their ancient, fossilized counterparts. In this study, high resolution TEM (HRTEM), high voltage TEM (HVTEM), and STEM microanalysis are used to characterize tha ultrastructural and microchemical composition of skeletal elements of the modern crinoid Neocrinus blakei.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 330
Author(s):  
Timofey V. Malyarenko ◽  
Alla A. Kicha ◽  
Valentin A. Stonik ◽  
Natalia V. Ivanchina

Sphingolipids are complex lipids widespread in nature as structural components of biomembranes. Commonly, the sphingolipids of marine organisms differ from those of terrestrial animals and plants. The gangliosides are the most complex sphingolipids characteristic of vertebrates that have been found in only the Echinodermata (echinoderms) phylum of invertebrates. Sphingolipids of the representatives of the Asteroidea and Holothuroidea classes are the most studied among all echinoderms. In this review, we have summarized the data on sphingolipids of these two classes of marine invertebrates over the past two decades. Recently established structures, properties, and peculiarities of biogenesis of ceramides, cerebrosides, and gangliosides from starfishes and holothurians are discussed. The purpose of this review is to provide the most complete information on the chemical structures, structural features, and biological activities of sphingolipids of the Asteroidea and Holothuroidea classes.


2021 ◽  
Vol 22 (3) ◽  
pp. 1496
Author(s):  
Domenico Loreto ◽  
Giarita Ferraro ◽  
Antonello Merlino

The structures of the adducts formed upon reaction of the cytotoxic paddlewheel dirhodium complex [Rh2(μ-O2CCH3)4] with the model protein hen egg white lysozyme (HEWL) under different experimental conditions are reported. Results indicate that [Rh2(μ-O2CCH3)4] extensively reacts with HEWL:it in part breaks down, at variance with what happens in reactions with other proteins. A Rh center coordinates the side chains of Arg14 and His15. Dimeric Rh–Rh units with Rh–Rh distances between 2.3 and 2.5 Å are bound to the side chains of Asp18, Asp101, Asn93, and Lys96, while a dirhodium unit with a Rh–Rh distance of 3.2–3.4 Å binds the C-terminal carboxylate and the side chain of Lys13 at the interface between two symmetry-related molecules. An additional monometallic fragment binds the side chain of Lys33. These data, which are supported by replicated structural determinations, shed light on the reactivity of dirhodium tetracarboxylates with proteins, providing useful information for the design of new Rh-containing biomaterials with an array of potential applications in the field of catalysis or of medicinal chemistry and valuable insight into the mechanism of action of these potential anticancer agents.


2006 ◽  
Vol 1 (2) ◽  
pp. 1934578X0600100 ◽  
Author(s):  
Valery M Dembitsky

This review is intended as a comprehensive survey of iodinated metabolites possessing carbon–iodine covalent bond, which have been obtained from living organisms. Generally thought to be minor components produced by many different organisms these interesting compounds now number more than 110. Many from isolated and identified iodine-containing metabolites showed high biological activities. Recent research, especially in the marine area, indicates this number will increase in the future. Sources of iodinated metabolites include microorganisms, algae, marine invertebrates, and some animals. Their origin and possible biological significance have also been discussed.


2002 ◽  
Vol 8 ◽  
pp. 195-210 ◽  
Author(s):  
Tomasz K. Baumiller ◽  
Forest J. Gahn

The paleontological literature on marine invertebrates is rich in supposed examples of parasitism and our tabulation shows a nearly even distribution of reported cases through the post-Cambrian Phanerozoic. Slightly lower frequencies characterize the Triassic and Jurassic and higher frequencies the Cretaceous and Tertiary, and the pattern roughly mirrors Sepkoski's (1984) marine diversity curve. The total number of parasitic associations for any geologic period rarely exceeds a dozen, yet few of the reported examples provide explicit criteria distinguishing parasitism from predation, commensalism, or mutualism. We evaluated the published examples using the following criteria: (1) evidence of a long-term relationship between two organisms, (2) benefit of interaction to supposed parasite, and (3) detriment of interaction to the host We found that only in exceptional cases were these criteria fulfilled. One example that provides much information on parasitic interactions involves platyceratids and crinoids and we summarize the evidence for the parasitic interaction between these two groups of organisms.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (07) ◽  
pp. 59-68
Author(s):  
H Mahajan ◽  
S Savale ◽  
P Nerkar ◽  

The present study was aimed at developing a Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) method for simultaneous determination of curcumin (CRM) and gefitinib (GFT) in bulk, plasma and brain homogenate. hydrochlorothiazide was used as an internal standard (IS). A new simple, rapid, selective, precise and accurate RP-HPLC method has been developed. The separation was achieved by using C-18 column (Qualisil BDS C18, 250 mm x 4.6 mm I.D.) coupled with a guard column of silica, mobile phase consisted of acetonitrile: water with 0.1% formic acid (30:70 v/v). The flow rate was 0.2 ml/min and the drug was detected using PDA detector at the wavelength of 242 nm. The experimental conditions, including the diluting solvent, mobile phase composition, column saturation and flow rate, were optimised to provide high-resolution and reproducible peaks. The method was developed and tested for linearity range of 10-60 μg/mL for bulk analysis and 200-800 ng/mL for plasma and brain homogenate. The developed method was validated as per ICH guidelines, in terms of linearity, application of the proposed method to bulk sample, recovery, precision, repeatability, ruggedness, sensitivity (LOD and LOQ) and robustness and stability study (short and long-term stabilities, freeze/thaw stability, post-preparative). The low value of % RSD showed that the method was precise within the acceptance limit of 2%. The developed method was successfully applied for the analysis of the drug in bulk as well as various marketed formulation and drug in plasma and brain distribution studies.


2018 ◽  
Vol 15 (24) ◽  
pp. 7451-7484 ◽  
Author(s):  
Laura A. Casella ◽  
Sixin He ◽  
Erika Griesshaber ◽  
Lourdes Fernández-Díaz ◽  
Martina Greiner ◽  
...  

Abstract. The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i) that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii) A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale.In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i) assess their potential for withstanding diagenetic overprint and to (ii) find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175 °C with a 100 mM NaCl + 10 mM MgCl2 alteration solution and lasted for up to 35 days. For each type of microstructure we (i) examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii) highlight different stages of inorganic carbonate formation, (iii) explore microstructural changes at different degrees of alteration, and (iv) perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons.We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i) decomposition of biopolymers and the associated formation of secondary porosity, (ii) homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e. recrystallization by grain growth eliminating grain boundaries), (iii) deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv) replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product.At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80 mol % magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.


Sign in / Sign up

Export Citation Format

Share Document