scholarly journals Machine learning in information systems - a bibliographic review and open research issues

Author(s):  
Benjamin M. Abdel-Karim ◽  
Nicolas Pfeuffer ◽  
Oliver Hinz

AbstractArtificial Intelligence (AI) and Machine Learning (ML) are currently hot topics in industry and business practice, while management-oriented research disciplines seem reluctant to adopt these sophisticated data analytics methods as research instruments. Even the Information Systems (IS) discipline with its close connections to Computer Science seems to be conservative when conducting empirical research endeavors. To assess the magnitude of the problem and to understand its causes, we conducted a bibliographic review on publications in high-level IS journals. We reviewed 1,838 articles that matched corresponding keyword-queries in journals from the AIS senior scholar basket, Electronic Markets and Decision Support Systems (Ranked B). In addition, we conducted a survey among IS researchers (N = 110). Based on the findings from our sample we evaluate different potential causes that could explain why ML methods are rather underrepresented in top-tier journals and discuss how the IS discipline could successfully incorporate ML methods in research undertakings.

2021 ◽  
Vol 54 (6) ◽  
pp. 1-32
Author(s):  
El-Ghazali Talbi

During the past few years, research in applying machine learning (ML) to design efficient, effective, and robust metaheuristics has become increasingly popular. Many of those machine learning-supported metaheuristics have generated high-quality results and represent state-of-the-art optimization algorithms. Although various appproaches have been proposed, there is a lack of a comprehensive survey and taxonomy on this research topic. In this article, we will investigate different opportunities for using ML into metaheuristics. We define uniformly the various ways synergies that might be achieved. A detailed taxonomy is proposed according to the concerned search component: target optimization problem and low-level and high-level components of metaheuristics. Our goal is also to motivate researchers in optimization to include ideas from ML into metaheuristics. We identify some open research issues in this topic that need further in-depth investigations.


Author(s):  
William B. Rouse

This book discusses the use of models and interactive visualizations to explore designs of systems and policies in determining whether such designs would be effective. Executives and senior managers are very interested in what “data analytics” can do for them and, quite recently, what the prospects are for artificial intelligence and machine learning. They want to understand and then invest wisely. They are reasonably skeptical, having experienced overselling and under-delivery. They ask about reasonable and realistic expectations. Their concern is with the futurity of decisions they are currently entertaining. They cannot fully address this concern empirically. Thus, they need some way to make predictions. The problem is that one rarely can predict exactly what will happen, only what might happen. To overcome this limitation, executives can be provided predictions of possible futures and the conditions under which each scenario is likely to emerge. Models can help them to understand these possible futures. Most executives find such candor refreshing, perhaps even liberating. Their job becomes one of imagining and designing a portfolio of possible futures, assisted by interactive computational models. Understanding and managing uncertainty is central to their job. Indeed, doing this better than competitors is a hallmark of success. This book is intended to help them understand what fundamentally needs to be done, why it needs to be done, and how to do it. The hope is that readers will discuss this book and develop a “shared mental model” of computational modeling in the process, which will greatly enhance their chances of success.


Author(s):  
Fernando Enrique Lopez Martinez ◽  
Edward Rolando Núñez-Valdez

IoT, big data, and artificial intelligence are currently three of the most relevant and trending pieces for innovation and predictive analysis in healthcare. Many healthcare organizations are already working on developing their own home-centric data collection networks and intelligent big data analytics systems based on machine-learning principles. The benefit of using IoT, big data, and artificial intelligence for community and population health is better health outcomes for the population and communities. The new generation of machine-learning algorithms can use large standardized data sets generated in healthcare to improve the effectiveness of public health interventions. A lot of these data come from sensors, devices, electronic health records (EHR), data generated by public health nurses, mobile data, social media, and the internet. This chapter shows a high-level implementation of a complete solution of IoT, big data, and machine learning implemented in the city of Cartagena, Colombia for hypertensive patients by using an eHealth sensor and Amazon Web Services components.


Author(s):  
Bhanu Chander

Artificial intelligence (AI) is defined as a machine that can do everything a human being can do and produce better results. Means AI enlightening that data can produce a solution for its own results. Inside the AI ellipsoidal, Machine learning (ML) has a wide variety of algorithms produce more accurate results. As a result of technology, improvement increasing amounts of data are available. But with ML and AI, it is very difficult to extract such high-level, abstract features from raw data, moreover hard to know what feature should be extracted. Finally, we now have deep learning; these algorithms are modeled based on how human brains process the data. Deep learning is a particular kind of machine learning that provides flexibility and great power, with its attempts to learn in multiple levels of representation with the operations of multiple layers. Deep learning brief overview, platforms, Models, Autoencoders, CNN, RNN, and Appliances are described appropriately. Deep learning will have many more successes in the near future because it requires very little engineering by hand.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 193 ◽  
Author(s):  
Sebastian Raschka ◽  
Joshua Patterson ◽  
Corey Nolet

Smarter applications are making better use of the insights gleaned from data, having an impact on every industry and research discipline. At the core of this revolution lies the tools and the methods that are driving it, from processing the massive piles of data generated each day to learning from and taking useful action. Deep neural networks, along with advancements in classical machine learning and scalable general-purpose graphics processing unit (GPU) computing, have become critical components of artificial intelligence, enabling many of these astounding breakthroughs and lowering the barrier to adoption. Python continues to be the most preferred language for scientific computing, data science, and machine learning, boosting both performance and productivity by enabling the use of low-level libraries and clean high-level APIs. This survey offers insight into the field of machine learning with Python, taking a tour through important topics to identify some of the core hardware and software paradigms that have enabled it. We cover widely-used libraries and concepts, collected together for holistic comparison, with the goal of educating the reader and driving the field of Python machine learning forward.


First Monday ◽  
2019 ◽  
Author(s):  
Niel Chah

Interest in deep learning, machine learning, and artificial intelligence from industry and the general public has reached a fever pitch recently. However, these terms are frequently misused, confused, and conflated. This paper serves as a non-technical guide for those interested in a high-level understanding of these increasingly influential notions by exploring briefly the historical context of deep learning, its public presence, and growing concerns over the limitations of these techniques. As a first step, artificial intelligence and machine learning are defined. Next, an overview of the historical background of deep learning reveals its wide scope and deep roots. A case study of a major deep learning implementation is presented in order to analyze public perceptions shaped by companies focused on technology. Finally, a review of deep learning limitations illustrates systemic vulnerabilities and a growing sense of concern over these systems.


2021 ◽  
Vol 3 (3) ◽  
pp. 59-62
Author(s):  
Mark Masongsong

On November 27, 2020, UrbanLogiq CEO Mark Masongsong spoke on the topic of Data Analytics and Public Safety at the 2020 CASIS West Coast Security Conference. The key points of discussion focused on the challenges of artificial intelligence and machine learning technologies and their utility towards public safety. 


Different mathematical models, Artificial Intelligence approach and Past recorded data set is combined to formulate Machine Learning. Machine Learning uses different learning algorithms for different types of data and has been classified into three types. The advantage of this learning is that it uses Artificial Neural Network and based on the error rates, it adjusts the weights to improve itself in further epochs. But, Machine Learning works well only when the features are defined accurately. Deciding which feature to select needs good domain knowledge which makes Machine Learning developer dependable. The lack of domain knowledge affects the performance. This dependency inspired the invention of Deep Learning. Deep Learning can detect features through self-training models and is able to give better results compared to using Artificial Intelligence or Machine Learning. It uses different functions like ReLU, Gradient Descend and Optimizers, which makes it the best thing available so far. To efficiently apply such optimizers, one should have the knowledge of mathematical computations and convolutions running behind the layers. It also uses different pooling layers to get the features. But these Modern Approaches need high level of computation which requires CPU and GPUs. In case, if, such high computational power, if hardware is not available then one can use Google Colaboratory framework. The Deep Learning Approach is proven to improve the skin cancer detection as demonstrated in this paper. The paper also aims to provide the circumstantial knowledge to the reader of various practices mentioned above.


Sign in / Sign up

Export Citation Format

Share Document