Effect of Plastic Deformation and Texture on Corrosion of Cold-Rolled AA6061 in NaCl Neutral Solution

Author(s):  
Diaoyu Zhou ◽  
Taotao Li ◽  
Jing Fan
2013 ◽  
Vol 203-204 ◽  
pp. 71-76
Author(s):  
Sławomir Kołodziej ◽  
Joanna Kowalska ◽  
Wiktoria Ratuszek ◽  
Wojciech Ozgowicz ◽  
Krzysztof Chruściel

The aim of this work was the microstructure and texture analysis of a deformed via cold-rolling 24.5Mn-3.5Si-1.5Al-Ti-Nb TWIP/TRIP type steel. It was found, that during cold plastic deformation a phase transformation of austenite into martensite takes place. The transformation progress was confirmed by the microscopic investigations. The texture of austenite is characterized by a limited α1=||RD fibre and the γ=||ND fibre. The texture of austenite changed with increasing deformation rate. In the texture of deformed austenite the strongest orientation is the {110} Goss orientation, which belongs to the α=||ND orientation fibre. During cold plastic deformation γ→ε and γ→ε→α’ phase transformations as well as the deformation of γ, ε and α’ phases are taking place in the steel. The formed ε phase (hexagonal structure) also possesses a distinct texture.


1950 ◽  
Vol 17 (1) ◽  
pp. 27-34
Author(s):  
P. E. Duwez ◽  
D. S. Clark ◽  
H. F. Bohnenblust

Abstract This paper presents the results of a theoretical and experimental investigation of the plastic deformation of long beams which are subjected to a concentrated transverse impact of constant velocity. In the theoretical analysis, the beam is supposed to be of infinite length, and plane cross sections are assumed to remain plane. The bending moment is assumed to depend on the curvature according to a function that is obtained from the stress-strain curve of the material. The theory neglects both the lateral displacement of the cross sections against each other due to the shearing force and the rotary kinetic energy of the motion of the beam. The theory shows that a strain is not propagated along a beam at constant velocity, as in the case of longitudinal impact. The strain depends on the ratio between the square of the distance from the point of impact and the time. This is correct regardless of the shape of the moment - curvature curve. If certain approximations are applied to the bending moment - curvature curve, the theory provides a method of computing the deflection curve of a beam at any instant during impact. An experimental study has been made in which the deflection curves of long simply supported beams have been obtained during impact. The deflection characteristics of a cold-rolled steel and an annealed-copper beam have been computed by approximating the bending moment - curvature curves. It is shown that for materials such as cold-rolled low-carbon steel, for which plastic deflection is localized at the point of impact, the observed deflection curve is closely approximated by computing a curve based on the assumption that the beam remains elastic. For a soft material like annealed copper, plastic deformation extends over a relatively large distance from the point of impact and, taking plastic deformation into account, a satisfactory agreement is obtained between theory and experimental results.


2019 ◽  
Vol 397 ◽  
pp. 51-58
Author(s):  
Hichem Farh ◽  
Toufik Ziar ◽  
Hanna Belghit ◽  
Mourad Khechba ◽  
Abdelouahab Noua ◽  
...  

The rolling operation consists of deforming the material by passing it between two rolls whose spacing is smaller than the initial thickness of the sample, the reduction in thickness is obtained discontinuously by successive passes in the rolling mill whose spacing between the cylinders gradually decreases. This operation can influence on the mechanical and microstructural properties of the deformed materials The effect of cold rolled on microstructural evolution and precipitation sequence in Al-Mg-Si alloy has been investigated by using optical microscopy and Differential Scanning Calorimetry (DSC) in this study . The results revealed that the distribution of the grains are elongated along the rolling direction. We also noted that i nsoluble coarse particles that originated during the manufacturing process of the alloy have become visible after the rolling processes . The dislocations generated by the plastic deformation during cooled rolling constitute preferential sites for the germination and the growth of the phases, which accelerates the kinetics of the precipitation.


2017 ◽  
Vol 373 ◽  
pp. 162-166
Author(s):  
Er Yang Lu ◽  
Xing Zhong Cao ◽  
Shuo Xue Jin ◽  
Yi Hao Gong ◽  
Peng Zhang ◽  
...  

Dislocations would be induced after plastic deformation, which might change the mechanical properties of solids. FeCrNi austenitic model alloy and its Mo-diluted alloy were cold rolled with different degree of thickness reduction. Positrons are sensitive to point defects, which are easily trapped and annihilated around the trapping sites. The mean positron lifetimes have been used to estimate the average dislocation concentration in solids. Meanwhile, the trapping efficiency μ was calculated from the lifetime results. The trapping efficiency value is estimated about 3.31×10-7 cm3s-1 for FeCrNi alloy and 3.31×10-7 cm3s-1 for Mo-diluted alloy, respectively. The increment of the hardness value during plastic deformation is related to the increase of the dislocation density and dislocation pile up in solids.


Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 540 ◽  
Author(s):  
Hanyu Hui ◽  
Re Xia ◽  
Juying Li ◽  
Qingsong Mei ◽  
Ye Ma ◽  
...  

The properties of nanoporous gold (NPG) were known to be dependent on the microstructure of NPG. In this study, the effects of cold rolling and annealing of the original Ag0.7Au0.3 alloy on the microstructure of NPG produced by dealloying under free corrosion condition were investigated. Ag0.7Au0.3 alloy samples were cold-rolled to different strain levels/thickness reductions up to 98% and annealed at 900 °C for 3 h before dealloying. It was found that cold rolling and annealing of the original alloy can lead to reduced ligament and pore sizes of NPG. Moreover, post-deformation annealing of the original alloy was found to facilitate the formation of a homogeneous and continuous NPG structure. The minima of pore and ligament sizes (both being ~8 nm) with uniform distribution were obtained in the annealed sample with a thickness reduction of 60% for a dealloying time of 7 h. The present study indicated the significant effect of a pre-dealloying treatment of the original alloy (by plastic deformation and annealing) on the formation and optimization of the NPG microstructure produced by dealloying.


2015 ◽  
Vol 117 (12) ◽  
pp. 123914 ◽  
Author(s):  
S. Taskaev ◽  
K. Skokov ◽  
V. Khovaylo ◽  
V. Buchelnikov ◽  
A. Pellenen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document