scholarly journals Effects of Cold Rolling and Annealing Prior to Dealloying on the Microstructure of Nanoporous Gold

Nanomaterials ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 540 ◽  
Author(s):  
Hanyu Hui ◽  
Re Xia ◽  
Juying Li ◽  
Qingsong Mei ◽  
Ye Ma ◽  
...  

The properties of nanoporous gold (NPG) were known to be dependent on the microstructure of NPG. In this study, the effects of cold rolling and annealing of the original Ag0.7Au0.3 alloy on the microstructure of NPG produced by dealloying under free corrosion condition were investigated. Ag0.7Au0.3 alloy samples were cold-rolled to different strain levels/thickness reductions up to 98% and annealed at 900 °C for 3 h before dealloying. It was found that cold rolling and annealing of the original alloy can lead to reduced ligament and pore sizes of NPG. Moreover, post-deformation annealing of the original alloy was found to facilitate the formation of a homogeneous and continuous NPG structure. The minima of pore and ligament sizes (both being ~8 nm) with uniform distribution were obtained in the annealed sample with a thickness reduction of 60% for a dealloying time of 7 h. The present study indicated the significant effect of a pre-dealloying treatment of the original alloy (by plastic deformation and annealing) on the formation and optimization of the NPG microstructure produced by dealloying.

2020 ◽  
Vol 56 (1) ◽  
pp. 89-97
Author(s):  
I. Angela ◽  
I. Basori ◽  
B.T. Sofyan

Al-brass alloys (Cu29.5Zn2.5Al wt. %) were produced by gravity casting and homogenized at 800?C for 2 h, resulting in a binary phase morphology identified as cubic ? and martensitic ?? phases through X-ray diffraction (XRD). Samples were then subsequently cold rolled and annealed at 150, 300, 400, and 600?C for 30 minutes. Visible traces of slip, intersecting slip bands, and shear bands were observed in microstructure images of the samples after each progressive deformation stage. Deformation-induced martensites were present after 20 % cold rolling. Higher thickness reduction resulted in simultaneous strain hardening of the phases. Low temperature annealing slightly increased microhardness, of both ? and ??, due to the formation of precipitates. SEM-EDX analysis showed that no solute segregation was found in annealed samples. Annealing at higher temperature resulted in conventional softening. Recrystallized equiaxed ?? phase grains were visible after annealing at 600?C.


2016 ◽  
Vol 854 ◽  
pp. 16-21 ◽  
Author(s):  
Anett Stöcker ◽  
Armin Franke ◽  
Harti Hermann ◽  
Rudolf Kawalla

In this paper the microstructure evolution of an iron-silicon alloy with 3.2 wt.% silicon throughout the manufacturing stages hot rolling, cold rolling and annealing is presented. Starting with a 35 mm thick feedstock, which was hot rolled to 1 mm, with different cooling conditions, the material was cold rolled to a final thickness of 0.3 mm and final annealed under same conditions to show the influence of the hot rolling on the texture and microstructure of the final annealed material.


10.30544/248 ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Padina Ajami Ghaleh Rashidi ◽  
Hossein Arabi ◽  
Seyed Mehdi Abbasi

Effect of cold-rolling and annealing time on the microstructure, hardness and the tensile properties of Haynes 25 superalloy at room-temperature and 760 °C were investigated in this research. Hot-rolled and solutionized alloy of Haynes 25 was subjected to cold-rolling with different amounts of reductions, i.e. 5%, 10%, 20%, 30% and 35%. After that, all cold-rolled samples were annealed at 1230 °C for a period of time from 2 to 120 min. Microstructural analysis showed that for annealing time range from 30 to 120 min, the rate of grains coarsening remained approximately stable in all cold-rolled samples. On the other hand, the hardness results showed that expected decreasing trend of hardness did not occur after annealing of the cold-rolled samples at 1230 °C; on the contrary, hardness increased moderately in the range time from 10 to 120 min. Tensile properties after annealing of the cold-rolled samples at room temperature and 760 °C decreased. Loss of the tensile properties can be related to the high annealing temperature. According to the experimental results, decreasing trend of tensile properties and increasing trend of hardness is linked to the formation of hcp phase after annealing at 1230 °C for 30 min. Even though the hcp phase is a hard phase, the interface between fcc and hcp phases provides suitable sites for crack nucleation and propagation.


1970 ◽  
Vol 92 (1) ◽  
pp. 115-120 ◽  
Author(s):  
I. Le May ◽  
K. D. Nair

The fatigue properties of some face-centred cubic sheet metals with cold rolling and annealing textures are reported. The observed differences between fatigue properties measured in the transverse and longitudinal directions in cold-rolled material are discussed and are related to the pole figures for the material. The study emphasizes that considerable directionality of fatigue properties can occur in rolled sheet metal.


2012 ◽  
Vol 538-541 ◽  
pp. 1208-1212 ◽  
Author(s):  
Zi Yong Hou ◽  
Yun Bo Xu ◽  
Di Wu ◽  
Guo Dong Wang

The effects of annealing routes (batch annealing and continuous annealing) on the development of microstructure and texture in a cold-rolled Nb-IF high strength steel sheet were studied by means of optical microscopy(OM), electron backscattered diffraction(EBSD) and ODF analysis. The results show that the finer and more homogenous recrystallization grain can be observed in the CA steel. The CA process leads to an increase in the intensity of the γ-fibers, and the very sharp and uniform γ-fibers are found in this case, which is beneficial to the deep-drawability.


2011 ◽  
Vol 702-703 ◽  
pp. 806-809
Author(s):  
Papa Rao Mondi ◽  
R. Madhavan ◽  
V. Subramanya Sarma ◽  
S. Sankaran

Severe cold rolling and short intercritcal annealing is often used to produce ultra-fine grained ferrite and martensite dual phase steels. In this paper, microstructure and texture of Nb-microalloyed steel following cold rolling and short intercritical annealing is investigated. The results show that cold rolling and annealing resulted in ultra-fine grained dual phase steel consisted of polygonal ferrite in the range of ~1-2 μm in size. In cold rolled material, the texture components are γ fiber (//normal direction) and α fiber (//rolling direction). Partial recrystallization texture was observed following intercritical annealing.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1866 ◽  
Author(s):  
Diaoyu Zhou ◽  
Wenwen Du ◽  
Xiyu Wen ◽  
Junwei Qiao ◽  
Wei Liang ◽  
...  

Using cold rolling, we plastically deform AA6061 sheets at room temperature and investigate the variations of the microstructures, textures and local deformation of the cold-rolled AA6061 sheets as functions of thickness reduction (Δt/t0, t0 and t are the thicknesses of the AA6061 sheet before and after the cold rolling, respectively). The volume fraction of total deformation texture is relatively independent of the thickness reduction for Δt/t0 ≤ 30%, and becomes an approximately linearly increasing function of the thickness reduction for Δt/t0 > 30%. Increasing the thickness reduction causes the increase of the Vickers hardness of the cross-section of the cold-rolled sheets, which exhibits a similar increase trend to the volume fraction of total deformation texture for Δt/t0 > 30%. A simple relation between the Vickers hardness and the thickness reduction is established and is used to curve-fit the experimental results.


2007 ◽  
Vol 550 ◽  
pp. 459-464
Author(s):  
Francois Gerspach ◽  
Nathalie Bozzolo ◽  
Francis Wagner

Zirconium alloys are widely used for different applications in nuclear industry. Precise knowledge of their texture is of great relevance since this hcp metal exhibits a strong crystal anisotropy. Despite that, the mechanisms of texture change during its deformation and subsequent annealing are still not precisely known. Thus, there is a need for a better understanding of the fundamental mechanisms of recrystallisation. Earlier works on Zr702 [1-3] suggested that the kinetics and local mechanisms of recrystallisation after cold-rolling was controlled by the heterogeneity of the deformed microstructure and that, at the end of recrystallisation (corresponding to the disappearance of the deformed matrix), the position of the major texture components remained almost unaffected. The aim of the present work is to confirm whether these statements can be generalized for various deformation conditions or not.


2012 ◽  
Vol 585 ◽  
pp. 402-406 ◽  
Author(s):  
Rashmi Mittal ◽  
Devendra Singh

Porosity, hardness and microstructural studies of cold rolled spray cast Al-6Si-20Pb alloy for different percentage of thickness reduction were conducted from top to bottom and from centre to periphery of the deposit. Porosity was found to decrease and hardness was found to increase with the increase in percentage of thickness reduction. Aluminum grains were observed to become coarser with the increase in percentage of thickness reduction.


2013 ◽  
Vol 203-204 ◽  
pp. 38-41
Author(s):  
Hanna J. Krztoń ◽  
Dariusz Kuc ◽  
Zofia Kania

The effect of cold rolling and annealing treatments in two temperatures, 800°C and 900°C on texture formation in duplex steel (X60MnAl30-9) was examined. Texture measurements were carried out using X-ray diffraction and Schulz reflection technique. The mechanical properties i. e. 0.2% proof stress, ultimate tensile strength and elongation were measured for each experimental conditions. It was found that ferrite was characterized by the orientations of a fibre which could be found in cold rolling state and also after the annealing in both temperatures. The weak orientations close to g fibre were observed after the annealing. The cold rolling texture of austenite was a typical texture of cold rolled fcc metals. No significant changes in texture of austenite after the annealing treatments were found.


Sign in / Sign up

Export Citation Format

Share Document