Ultrasonic manipulation of magnetic particles in a microfluidic channel

2014 ◽  
Vol 15 (7) ◽  
pp. 1411-1416 ◽  
Author(s):  
Ariful Haque Siddique ◽  
Seung Hyun Cho ◽  
Bongyoung Ahn ◽  
CheolGi Kim
Lab on a Chip ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 1912-1922 ◽  
Author(s):  
Francesco Del Giudice ◽  
Hojjat Madadi ◽  
Massimiliano M. Villone ◽  
Gaetano D'Avino ◽  
Angela M. Cusano ◽  
...  

Deflection of magnetic beads in a microfluidic channel can be improved through viscoelastic focusing.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4596
Author(s):  
Daniel Kappe ◽  
Laila Bondzio ◽  
Joris Swager ◽  
Andreas Becker ◽  
Björn Büker ◽  
...  

In this review article, we conceptually investigated the requirements of magnetic nanoparticles for their application in biosensing and related them to example systems of our thin-film portfolio. Analyzing intrinsic magnetic properties of different magnetic phases, the size range of the magnetic particles was determined, which is of potential interest for biosensor technology. Different e-beam lithography strategies are utilized to identify possible ways to realize small magnetic particles targeting this size range. Three different particle systems from 500 μm to 50 nm are produced for this purpose, aiming at tunable, vertically magnetized synthetic antiferromagnets, martensitic transformation in a single elliptical, disc-shaped Heusler Ni50Mn32.5Ga17.5 particle and nanocylinders of Co2MnSi-Heusler compound. Perspectively, new applications for these particle systems in combination with microfluidics are addressed. Using the concept of a magnetic on–off ratchet, the most suitable particle system of these three materials is validated with respect to magnetically-driven transport in a microfluidic channel. In addition, options are also discussed for improving the magnetic ratchet for larger particles.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2250 ◽  
Author(s):  
Anna Malec ◽  
Georgios Kokkinis ◽  
Christoph Haiden ◽  
Ioanna Giouroudi

Bacterial contamination of water sources (e.g., lakes, rivers and springs) from waterborne bacteria is a crucial water safety issue and its prevention is of the utmost significance since it threatens the health and well-being of wildlife, livestock, and human populations and can lead to serious illness and even death. Rapid and multiplexed measurement of such waterborne pathogens is vital and the challenge is to instantly detect in these liquid samples different types of pathogens with high sensitivity and specificity. In this work, we propose a biosensing system in which the bacteria are labelled with streptavidin coated magnetic markers (MPs—magnetic particles) forming compounds (MLBs—magnetically labelled bacteria). Video microscopy in combination with a particle tracking software are used for their detection and quantification. When the liquid containing the MLBs is introduced into the developed, microfluidic platform, the MLBs are accelerated towards the outlet by means of a magnetic field gradient generated by integrated microconductors, which are sequentially switched ON and OFF by a microcontroller. The velocities of the MLBs and that of reference MPs, suspended in the same liquid in a parallel reference microfluidic channel, are calculated and compared in real time by a digital camera mounted on a conventional optical microscope in combination with a particle trajectory tracking software. The MLBs will be slower than the reference MPs due to the enhanced Stokes’ drag force exerted on them, resulting from their greater volume and altered hydrodynamic shape. The results of the investigation showed that the parameters obtained from this method emerged as reliable predictors for E. coli concentrations.


2014 ◽  
Vol 605 ◽  
pp. 352-355
Author(s):  
Ioanna Giouroudi ◽  
Chinthaka Gooneratne ◽  
Georgios Kokkinis

This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs towards a giant magnetoresistance (GMR) sensing element which rapidly detects the majority of MPs trapped around the square-shaped conductors. The ability to precisely transport a small number of MPs in a controlled manner over long distances by magnetic forces enables the rapid concentration of a majority of MPs to the sensing zone for detection. This is especially important in low concentration samples. The conductors are designed in such a manner so as to increase the capture efficiency as well as the precision and speed of transportation. By switching current to different conductors, MPs can be manipulated and immobilized on the innermost conductor where the GMR sensor is located. This technique rapidly guides the MPs towards the sensing zone. Secondly, for optimum measurement capability with high spatial resolution the GMR sensor is fabricated directly underneath and all along the innermost conductor to detect the stray fields originating from the MPs. Finally, a microfluidic channel is fabricated on top of this micro-chip. Experiments inside the microchannel were carried out and the MPs were successfully trapped at the sensing area.


Author(s):  
Jumril Yunas ◽  
Muzalifah Mohd Said ◽  
Roer Eka Pawinanto ◽  
Badariah Bais ◽  
Budi Mulyanti ◽  
...  

In this paper we present the development of electromagnetic (EM) microfluidic pumps incorporating the magnetic polymer composite for the transport of microfluidic bio-sample. The pump system includes the electromagnetic field generator, a flexible actuator membrane made of polymer material with embedded magnetic particles and valve-less microfluidic channel and chamber. The micropump is fabricated using a MEMS process with additional bonding process. Various types of the magnetic membrane as well as electromagnetic coils were fabricated and characterized to find optimum pump performance. As the results, it is found that the fabricated pump systems were able to deliver fluidic sample within a large flow-rate range from 6 ml/min down to several nl/min which can be adjusted by setting the input electrical current parameters, such as intensity, frequency and type of the current signal.


Author(s):  
M.D. Bentzon ◽  
J. v. Wonterghem ◽  
A. Thölén

We report on the oxidation of a magnetic fluid. The oxidation results in magnetic super lattice crystals. The “atoms” are hematite (α-Fe2O3) particles with a diameter ø = 6.9 nm and they are covered with a 1-2 nm thick layer of surfactant molecules.Magnetic fluids are homogeneous suspensions of small magnetic particles in a carrier liquid. To prevent agglomeration, the particles are coated with surfactant molecules. The magnetic fluid studied in this work was produced by thermal decomposition of Fe(CO)5 in Declin (carrier liquid) in the presence of oleic acid (surfactant). The magnetic particles consist of an amorphous iron-carbon alloy. For TEM investigation a droplet of the fluid was added to benzine and a carbon film on a copper net was immersed. When exposed to air the sample starts burning. The oxidation and electron irradiation transform the magnetic particles into hematite (α-Fe2O3) particles with a median diameter ø = 6.9 nm.


1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1817-C8-1818 ◽  
Author(s):  
S. McVitie ◽  
J. N. Chapman ◽  
S. J. Hefferman ◽  
W. A. P. Nicholson

Sign in / Sign up

Export Citation Format

Share Document