scholarly journals Biosensing System for Concentration Quantification of Magnetically Labeled E. coli in Water Samples

Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2250 ◽  
Author(s):  
Anna Malec ◽  
Georgios Kokkinis ◽  
Christoph Haiden ◽  
Ioanna Giouroudi

Bacterial contamination of water sources (e.g., lakes, rivers and springs) from waterborne bacteria is a crucial water safety issue and its prevention is of the utmost significance since it threatens the health and well-being of wildlife, livestock, and human populations and can lead to serious illness and even death. Rapid and multiplexed measurement of such waterborne pathogens is vital and the challenge is to instantly detect in these liquid samples different types of pathogens with high sensitivity and specificity. In this work, we propose a biosensing system in which the bacteria are labelled with streptavidin coated magnetic markers (MPs—magnetic particles) forming compounds (MLBs—magnetically labelled bacteria). Video microscopy in combination with a particle tracking software are used for their detection and quantification. When the liquid containing the MLBs is introduced into the developed, microfluidic platform, the MLBs are accelerated towards the outlet by means of a magnetic field gradient generated by integrated microconductors, which are sequentially switched ON and OFF by a microcontroller. The velocities of the MLBs and that of reference MPs, suspended in the same liquid in a parallel reference microfluidic channel, are calculated and compared in real time by a digital camera mounted on a conventional optical microscope in combination with a particle trajectory tracking software. The MLBs will be slower than the reference MPs due to the enhanced Stokes’ drag force exerted on them, resulting from their greater volume and altered hydrodynamic shape. The results of the investigation showed that the parameters obtained from this method emerged as reliable predictors for E. coli concentrations.

2021 ◽  
Vol 9 (2) ◽  
pp. 308
Author(s):  
Michaela Kubelová ◽  
Ivana Koláčková ◽  
Tereza Gelbíčová ◽  
Martina Florianová ◽  
Alžběta Kalová ◽  
...  

The great plasticity and diversity of the Escherichia coli genome, together with the ubiquitous occurrence, make E. coli a bacterium of world-wide concern. Of particular interest are pathogenic strains and strains harboring antimicrobial resistance genes. Overlapping virulence-associated traits between avian-source E. coli and human extraintestinal pathogenic E. coli (ExPEC) suggest zoonotic potential and safety threat of poultry food products. We analyzed whole-genome sequencing (WGS) data of 46 mcr-1-positive E. coli strains isolated from retail raw meat purchased in the Czech Republic. The investigated strains were characterized by their phylogroup—B1 (43%), A (30%), D (11%), E (7%), F (4%), B2 (2%), C (2%), MLST type, and serotype. A total of 30 multilocus sequence types (STs), of which ST744 was the most common (11%), were identified, with O8 and O89 as the most prevalent serogroups. Using the VirulenceFinder tool, 3 to 26 virulence genes were detected in the examined strains and a total of 7 (15%) strains met the pathogenic criteria for ExPEC. Four strains were defined as UPEC (9%) and 18 (39%) E. coli strains could be classified as APEC. The WGS methods and available on-line tools for their evaluation enable a comprehensive approach to the diagnosis of virulent properties of E. coli strains and represent a suitable and comfortable platform for their detection. Our results show that poultry meat may serve as an important reservoir of strains carrying both virulence and antibiotic resistance genes for animal and human populations.


2021 ◽  
Vol 7 (5) ◽  
pp. 82
Author(s):  
River Gassen ◽  
Dennis Thompkins ◽  
Austin Routt ◽  
Philippe Jones ◽  
Meghan Smith ◽  
...  

Magnetic particles have been evaluated for their biomedical applications as a drug delivery system to treat asthma and other lung diseases. In this study, ferromagnetic barium hexaferrite (BaFe12O19) and iron oxide (Fe3O4) particles were suspended in water or glycerol, as glycerol can be 1000 times more viscous than water. The particle concentration was 2.50 mg/mL for BaFe12O19 particle clusters and 1.00 mg/mL for Fe3O4 particle clusters. The magnetic particle cluster cross-sectional area ranged from 15 to 1000 μμm2, and the particle cluster diameter ranged from 5 to 45 μμm. The magnetic particle clusters were exposed to oscillating or rotating magnetic fields and imaged with an optical microscope. The oscillation frequency of the applied magnetic fields, which was created by homemade wire spools inserted into an optical microscope, ranged from 10 to 180 Hz. The magnetic field magnitudes varied from 0.25 to 9 mT. The minimum magnetic field required for particle cluster rotation or oscillation in glycerol was experimentally measured at different frequencies. The results are in qualitative agreement with a simplified model for single-domain magnetic particles, with an average deviation from the model of 1.7 ± 1.3. The observed difference may be accounted for by the fact that our simplified model does not include effects on particle cluster motion caused by randomly oriented domains in multi-domain magnetic particle clusters, irregular particle cluster size, or magnetic anisotropy, among other effects.


2013 ◽  
Vol 275-277 ◽  
pp. 429-432 ◽  
Author(s):  
Yu Qiang Cai ◽  
Na Xing

Abstract. Magnetic fluid revolving sealing is widely used in modern industry. In the process of application, it is founded that the starting friction torque is very large, particularly at lower temperature. This problem has become a key factor restricting the application of magnetic fluid rotation sealing. In this paper, the mechanism of starting torque increase is analyzed, based on the change of microstructure and its viscosity. After analysis , such conclusion is obtained , which can be described: to a certain sealing structure, the type of magnetic fluid, size distribution of magnetic particles as well as the working condition concluding temperature, magnetic field gradient and the revolving velocity of shaft is the main influence factor of starting friction torque . It is very useful to reduce the starting friction torque.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (8) ◽  
pp. 1912-1922 ◽  
Author(s):  
Francesco Del Giudice ◽  
Hojjat Madadi ◽  
Massimiliano M. Villone ◽  
Gaetano D'Avino ◽  
Angela M. Cusano ◽  
...  

Deflection of magnetic beads in a microfluidic channel can be improved through viscoelastic focusing.


Author(s):  
Anna Malec ◽  
Christoph Haiden ◽  
Georgios Kokkinis ◽  
Ioanna Giouroudi

In this paper, we present a method for detecting and quantifying pathogens in water samples. The method proposes a portable dark field imaging and analysis system for quantifying E. coli concentrations in water after being labeled with magnetic particles. The system utilizes the tracking of moving micro/nano objects close to or below the optical resolution limit confined in small sample volumes (~ 10 µl). In particular, the system analyzes the effect of volumetric changes due to bacteria conjugation to magnetic microparticles (MP) on their Brownian motion while being suspended in liquid buffer solution. The method allows for a simple inexpensive implementation and the possibility to be used as point-of-need testing system. Indeed, a work-ing prototype is demonstrated with the capacity of quantifying E. coli colony forming units (CFU) at a range of 1x10³ - 6x10³ CFU/mL.


Author(s):  
Thomas K. Budge ◽  
Arian Pregenzer

As biodiversity, ecosystem function, and ecosystem services become more closely linked with human well-being at all scales, the study of ecology takes on increasing social, economic, and political importance. However, when compared with other disciplines long linked with human well-being, such as medicine, chemistry, and physics, the technical tools and instruments of the ecologist have generally lagged behind those of the others. This disparity is beginning to be overcome with the increasing use of biotelemetric techniques, microtechnologies, satellite and airborne imagery, geographic information systems (GIS), and both regional and global data networks. We believe that the value and efficiency of ecosystem studies can advance significantly with more widespread use of existing technologies, and with the adaptation of technologies currently used in other disciplines to ecosystem studies. More importantly, the broader use of these technologies is critical for contributing to the preservation of biodiversity and the development of sustainable natural resource use by humans. The concept of human management of biodiversity and natural systems is a contentious one. However, we assert that as human population and resource consumption continue to increase, biodiversity and resource sustainability will only be preserved by increasing management efforts—if not of the biodiversity and resources themselves, then of human impacts on them. The technologies described in this chapter will help enable better management efforts. In this context, biodiversity refers not only to numbers of species (i.e., richness) in an arbitrarily defined area, but also to species abundances within that area. Sustainability refers to the maintenance of natural systems, biodiversity, and resources for the benefit of future generations. Arid-land grazing systems support human social systems and economies in regions all over the world, and can be expected to play increasingly critical roles as human populations increase. Further, grazing systems represent a nexus of natural and domesticated systems. In these systems, native biodiversity exists side by side with introduced species and populations, and in fact can benefit from them.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S585-S586
Author(s):  
Sarah McGough ◽  
Derek MacFadden ◽  
Mohammad Hattab ◽  
Kare Molbak ◽  
Mauricio Santillana

Abstract Background Widely recognized as a major public health threat globally, the rapid increase of antibiotic resistance in bacteria could soon render our most effective method to combat infections obsolete. Factors influencing the burden of resistance in human populations remain poorly described, though temperature is known to play an important role in mechanisms of bacterial growth and transmission. Methods Here, we present the first evidence that ambient temperatures may modulate the rate of increase of antibiotic resistance across Europe. Using a comprehensive dataset containing information across 28 countries, for 17 years (2000–2016), 3 common bacterial pathogens, and 4 antibiotic classes collectively representing over 4 million tested isolates, we show that antibiotic resistance has increased more rapidly in warmer regions over a period of nearly 2 decades. Results Specifically, we show that European countries with 10°C warmer ambient temperatures have experienced more rapid increases in antibiotic resistance to E. coli and K. pneumoniae over the 17-year period, ranging between 0.33%/year (95% CI 0.2, 0.5) and 1.2%/year (0.4, 1.9), even after accounting for recognized drivers of resistance including antibiotic consumption and population density. We found a decreasing relationship for S. aureus and methicillin of -0.4%/year (95% CI −0.7, 0.0), reflecting widespread declines in MRSA across Europe over the study period. Conclusion Our findings suggest that rising temperatures globally may hasten the spread of resistance and complicate efforts to mitigate it. Disclosures All authors: No reported disclosures.


2013 ◽  
Vol 169 (5) ◽  
pp. R89-R97 ◽  
Author(s):  
Sandra Pekic ◽  
Vera Popovic

It has been difficult to identify factors that affect the risk of cancer, but we know that people are at higher risk as they get older, or if they have a strong family history of cancer. The potential influence of environmental and behavioral factors remains poorly understood. Early population-based and case–control studies suggested that higher serum levels of IGF1 could be associated with increased cancer risk. Since GH therapy increases IGF1 levels, concern has been raised regarding its potential role as a cancer initiation factor. Experimental evidence and some clinical studies showed that when GH/IGF1 secretion or action was inhibited, a decreased incidence and rate of progression of cancers occurred. However, human populations comprise a garden variety of genotypes that respond differently to the same kind of exposures. Human population studies frequently reveal only very small effects to these exposures. So, are GH and cancer guilty by association? After more than 20 years, leukemia, a major safety issue initially believed associated with GH treatment in children with GH deficiency (GHD), has not been confirmed but the risk of second malignancies in patients previously treated with irradiation has been detected or confirmed through the National Cooperative Growth Study. Overall, this large study confirmed the favorable overall safety profile of GH therapy in children with GHD, and also highlighted specific populations at potential risk. The risk of secondary malignancy following radiotherapy is surely related to radiotherapy more than GH therapy that may increase growth but is less likely to start the oncogenic process. In GH-deficient adults treated with GH, observational studies (KIMS, HypoCCS) have shown that when IGF1 levels were targeted within normal age-related reference ranges, the occurrence of malignancies was not higher than in the general population.


Author(s):  
Dorothy N. Gamble

This entry describes how the viability of long-term human social systems is inextricably linked to human behavior, environmental resources, the health of the biosphere, and human relationships with all living species. New ways of thinking and acting in our engagement with the biosphere are explored, with attention to new ways of measuring well-being to understand the global relationships among human settlements, food security, human population growth, and especially alternative economic efforts based on prosperity rather than on growth. The challenge of social work is to engage in socioecological activities that will prevent and slow additional damage to the biosphere while at the same time helping human populations to develop the cultural adaptation and resilience required to confront increasing weather disasters; displacement resulting from rising seas; drought conditions that severely affect food supplies; the loss of biodiversity, soils, forests, fisheries, and clean air; and other challenges to human social organizations.


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 40
Author(s):  
Mohd Kamuri ◽  
Zurina Zainal Abidin ◽  
Mohd Yaacob ◽  
Mohd Hamidon ◽  
Nurul Md Yunus ◽  
...  

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2–24 s and a flow rate range of 1.2–9.6 μ L min − 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 μ L min − 1 at a constant frequency, voltage, and a low conductivity.


Sign in / Sign up

Export Citation Format

Share Document