Estimating biological half-lives of 137Cs in a cyprinid fish Tribolodon hakonensis by a one-compartment model considering growth dilution effect

2020 ◽  
Vol 86 (5) ◽  
pp. 861-871
Author(s):  
Kouji Niizeki ◽  
Toshihiro Wada ◽  
Kenji Nanba ◽  
Keiichi Sasaki ◽  
Wataru Teramoto ◽  
...  
1983 ◽  
Vol 25 (3) ◽  
pp. 801-803 ◽  
Author(s):  
Tsuneo Nakajima ◽  
Hisaho Yoshida ◽  
Banri Sone ◽  
Yoshihiko Hotta

2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


2001 ◽  
Vol 40 (05) ◽  
pp. 164-171 ◽  
Author(s):  
B. Nowak ◽  
H.-J. Kaiser ◽  
S. Block ◽  
K.-C. Koch ◽  
J. vom Dahl ◽  
...  

Summary Aim: In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. Methods: 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin 5PECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All dato sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, rnidventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (>70% TT-SPECT) were used for comparative quantification. Results: First and second mean global MBF values were 0.85 ml × min-1 × g-1 and 0.84 ml × min-1 × g1, respectively, with a repeatability coefficient of 0.30 ml ÷ min-1 × gl. After sectorization mean MBF_micr was between 0.58 ml × min1 ÷ ml"1 and 0.68 ml × min-1 × ml"1 in well perfused areas. Corresponding TT-SPECT values ranged from 83 % to 91 %, and FDG-PET values from 91 % to 103%. All procedures yielded higher values for the lateral than the septal regions. Conclusion: Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.


1995 ◽  
Vol 74 (06) ◽  
pp. 1452-1456 ◽  
Author(s):  
Johannes Treib ◽  
Anton Haass ◽  
Gerhard Pindur ◽  
Ulrich T Seyfert ◽  
Wolfgang Treib ◽  
...  

SummaryThe plasma clearance of hydroxyethyl starch (HES) depends on the initial molecular weight and the degree of substitution. So far, little attention has been paid to the clinical relevance of the C2/C6 substitution ratio of hydroxyethyl starch.10 patients with cerebrovascular circulatory disturbance received hemodilution therapy for 10 days, consisting of 10% HES 200/0.5 (mean molecular weight 200 kD, degree of substitution 0.5) with a C2/C6 ratio of 13.4. A second group of 10 patients received a starch solution with identical initial molecular weight and degree of substitution but with a C2/C6 ratio of 5.7.After the administration of a single dose, no significant differences between the two groups were observed. After repeated administration, significant differences could be detected in hemorheology, coagulation and elimination (p<0.01). The larger C2/C6 ratio led to a higher intravascular mean molecular weight (95 vs. 84 kD), which in turn led to a higher increase in serum concentration during the therapy (14.7 vs.8.6 mg/ml). Hematocrit was lowered more (-30,5 vs. -23,5%) and plasma viscosity was increased more. There was also a more pronounced increase in partial thromboplastin time (+30% vs. +13%) and a factor of 2 larger decrease of factor VIII/von Willebrand factor-complex (p <0.01), which exceeded the dilution effect.The higher C2/C6 ratio of HES 200/0.5/13.4 slows down enzymatic degradation. After repeated administration of this starch, large molecules accumulate which are inefficiently degraded. The same effect has been observed after therapy with highly-substituted HES. This accumulation of large molecules leads to a beneficial longer lasting volume effect. The disadvantages include an increase in plasma viscosity and coagulation disturbances, which cannot be explained with the respective dilution effect alone. For these reasons, the C2/C6 ratio is of clinical relevance and should be included in the product labeling in the future.


1986 ◽  
Vol 56 (01) ◽  
pp. 001-005 ◽  
Author(s):  
M Verstraete ◽  
C A P F Su ◽  
P Tanswell ◽  
W Feuerer ◽  
D Collen

SummaryPharmacokinetics and pharmacological effects of two intravenous doses of recombinant tissue-type plasminogen activator (rt-PA) (40 and 60 mg over 90 min) were determined in healthy volunteers. Mean maximum plasma concentrations were 1080 and 1560 ng/ml respectively. The steady state level during subsequent maintenance infusion of 30 mg over 6 h was 250 ng/ml. The pharmacokinetics of rt-PA showed a bi-exponential disappearance from plasma consistent with a 2-compartment model of t½α = 5.7 min, a t½β = 1.3 h and a total clearance of 380 ml/min.Mean fibrinogen levels at the end of the infusions of 40 mg or 60 mg rt-PA over 90 min, measured in thawed plasma samples collected on citrate/aprotinin, decreased to 74% and 57% of the preinfusion values respectively. Plasminogen fell to 55% and 48%, and α2-antiplasmin to 28% and 18% of initial values. No further decrease of these parameters was observed during the infusion of 30 mg rt-PA over 6 h. Only 2% of the preinfusion fibrinogen levels could be recovered as fibrinogen-fibrin degradation products. This moderate extent of systemic fibrinogenolysis is much less than that reported for therapeutic i.v. infusions of streptokinase.


Sign in / Sign up

Export Citation Format

Share Document