Chemical vapor deposition growth and transport properties of MoS2–2H thin layers using molybdenum and sulfur as precursors

Rare Metals ◽  
2015 ◽  
Author(s):  
Zhi-Tian Shi ◽  
Hong-Bin Zhao ◽  
Xiao-Qiang Chen ◽  
Ge-Ming Wu ◽  
Feng Wei ◽  
...  
2015 ◽  
Vol 32 (6) ◽  
pp. 638
Author(s):  
Xingmin Cai ◽  
Xiaoqiang Su ◽  
Fan Ye ◽  
Huan Wang ◽  
Guangxing Liang ◽  
...  

2020 ◽  
Vol 13 (7) ◽  
pp. 075505
Author(s):  
Tomohiro Yamaguchi ◽  
Hiroki Nagai ◽  
Takanori Kiguchi ◽  
Nao Wakabayashi ◽  
Takuto Igawa ◽  
...  

2000 ◽  
Vol 15 (8) ◽  
pp. 1702-1708
Author(s):  
Ruichao Zhang ◽  
Ren Xu

A novel two-step metalorganic chemical vapor deposition process was used in this study to prepare Sr1−xBaxNb2O6 (SBN) thin films. Two thin layers of single-phase SrNb2O6 and BaNb2O6 were deposited alternately on a silicon substrate, and the solid solution of SBN was obtained by high-temperature annealing. The stoichiometry control of the SrNb2O6 and the BaNb2O6 thin films was achieved through deposition process control, according to the evaporation characteristics of double metal alkoxide. The evaporation behavior of double metal alkoxide precursors SrNb2(1-OC4H9)12 and BaNb2(1-OC4H9)12 was studied, and the results were compared with the evaporation of single alkoxide Nb(1-OC4H9)5.


1987 ◽  
Vol 102 ◽  
Author(s):  
P.-Y. Lu ◽  
L. M. Williams ◽  
C.-H. Wang ◽  
S. N. G. Chu ◽  
M. H. Ross

ABSTRACTTwo low temperature metalorganic chemical vapor deposition growth techniques, the pre-cracking method and the plasma enhanced method, will be discussed. The pre-cracking technique enables one to grow high quality epitaxial Hg1−xCdxTe on CdTe or CdZnTe substrates at temperatures around 200–250°C. HgTe-CdTe superlattices with sharp interfaces have also been fabricated. Furthermore, for the first time, we have demonstrated that ternary Hg1−xCdTe compounds and HgTe-CdTe superlattices can be successfully grown by the plasma enhanced process at temperatures as low as 135 to 150°C. Material properties such as surface morphology, infrared transmission, Hall mobility, and interface sharpness will be presented.


Author(s):  
Shu KONDO ◽  
Daiki YAMAMOTO ◽  
Kamal Prasad Prasad Sharma ◽  
Yazid Yaakob ◽  
Takahiro SAIDA ◽  
...  

Abstract We performed single-walled carbon nanotube (SWCNT) growth on flexible stainless-steel foils by applying alcohol catalytic chemical vapor deposition using an Ir catalyst with an alumina buffer layer. When the alumina thickness was 90 nm, vertically aligned SWCNTs with a thickness of 4.6 m were grown. In addition, Raman results showed that the diameters of most SWCNTs were distributed below 1.1 nm. Compared with conventional chemical vapor deposition growth where Si wafers are used as substrates, this method is more cost effective and easier to extend for mass production of small-diameter SWCNTs.


Sign in / Sign up

Export Citation Format

Share Document