Effects of Impurities Distribution on the Crystal Structure and Electrical Properties of Multi-Crystalline Silicon Ingots

2011 ◽  
Vol 675-677 ◽  
pp. 101-104
Author(s):  
Qi Zhi Xing ◽  
Wei Dong ◽  
Shu Ang Shi ◽  
Guo Bin Li ◽  
Yi Tan

Multi-crystalline silicon ingots were prepared by directional solidification using vacuum induction melting furnace. The content of aluminum and iron deeply decreased in the columnar crystal region of the multi-crystalline silicon ingots. The columnar crystal growth broke off corresponded to the iron contents sharply increased. The height of columnar crystal in the silicon ingots related to the pulling rates had been clarified by the constitutional supercooling theory. The maximum of the resistivity and the minority carrier lifetime closed to the transition zone where the conductive type changed from p-type to n-type in silicon ingots. Further analysis suggested that the electrical properties were related to the contents of shallow level impurities aluminum, boron and phosphorus.

1996 ◽  
Vol 422 ◽  
Author(s):  
S. Libertino ◽  
S. Coffa ◽  
R. Mosca ◽  
E. Gombia

AbstractWe have investigated the effects of oxygen codoping and thermal annealing on the deep level spectrum and carrier lifetime of Er implanted crystalline Si. It is found that oxygen codoping produces a dramatic modification in the concentration and energetic position of Er-related deep levels in the Si band gap. In particular the formation of Er-O complexes is shown to produce a promotion from deep to shallow levels. This effect is the major responsible of the enhancement of Er donor behaviour in presence of oxygen and also produces a large increase in the minority carrier lifetime


1992 ◽  
Vol 262 ◽  
Author(s):  
Jacques I. Pankove

ABSTRACTHydrogen ties Si dangling bonds at defects as well as near impurities. Defect passivation leads to dramatically lower surface recombination and increased minority carrier lifetime. Dopant neutralization increases the resistivity of the crystal and the mobility of carriers. The neutralization of donors and acceptors is optimum at different temperatures. Deep levels can also be neutralized.


2013 ◽  
Vol 440 ◽  
pp. 82-87 ◽  
Author(s):  
Mohammad Jahangir Alam ◽  
Mohammad Ziaur Rahman

A comparative study has been made to analyze the impact of interstitial iron in minority carrier lifetime of multicrystalline silicon (mc-Si). It is shown that iron plays a negative role and is considered very detrimental for minority carrier recombination lifetime. The analytical results of this study are aligned with the spatially resolved imaging analysis of iron rich mc-Si.


2007 ◽  
Vol 334-335 ◽  
pp. 297-300
Author(s):  
Si Young Sung ◽  
Bong Jae Choi ◽  
Young Jig Kim

The aim of this study is to evaluated the possibility of the in-situ synthesized (TiC+TiB) reinforced titanium matrix composites (TMCs) for the application of structural materials. In-situ synthesis and casting of TMCs were carried out in a vacuum induction melting furnace with Ti and B4C. The synthesized TMCs were characterized using scanning electron microscopy, an electron probe micro-analyzer and transmission electron microscopy, and evaluated through thermodynamic calculations. The spherical TiC plus needle-like and large, many-angled facet TiB reinforced TMCs can be synthesized with Ti and B4C by a melting route.


2001 ◽  
Vol 45 (12) ◽  
pp. 1973-1978 ◽  
Author(s):  
Mohamed Hilali ◽  
Abasifreke Ebong ◽  
Ajeet Rohatgi ◽  
Daniel L Meier

2021 ◽  
Vol 119 (18) ◽  
pp. 182106
Author(s):  
K. Shima ◽  
R. Tanaka ◽  
S. Takashima ◽  
K. Ueno ◽  
M. Edo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document