Effect of Temperature on Biochar Product Yield from Selected Lignocellulosic Biomass in a Pyrolysis Process

2012 ◽  
Vol 3 (3) ◽  
pp. 311-318 ◽  
Author(s):  
Isaac Femi Titiladunayo ◽  
Armando G. McDonald ◽  
Olorunnisola Peter Fapetu
2017 ◽  
Vol 68 (3) ◽  
pp. 576-580 ◽  
Author(s):  
Alexandru Filipovici ◽  
Dumitru Tucu ◽  
Andrzej Bialowiec ◽  
Przemyslaw Bukowski ◽  
George Catalin Crisan ◽  
...  

Different approach to valorise the sweet sorghum using pyrolysis process to obtain valuable resources for energy production: bio-char, bio-oil and syngas are presented in the paper. In this study the influence of process parameters of slow pyrolysis on sorghum and straw were analysed. Temperatures used in the process varied from 400 to 800�C and heating rate parameter varied from 10�C . min-1 to 65�C . min-1. The experiments were conducted using a lab scale slow pyrolysis reactor with electric heaters, equipped with a thermo balance analyzer to collect data of pyrolysis process. The achieved product yield can vary significantly according to the slow pyrolysis parameters. The temperature influenced more on the bio-char yield compared to the heating rate parameter. The highest bio-char yield (over 35% weight,) was obtained at 400�C and heating rate of 10�C . min-1.


Author(s):  
Muhammad Imran Din ◽  
Alizzah Amanat ◽  
Zaib Hussain ◽  
Rida Khalid ◽  
Abdul Rauf

2022 ◽  
Vol 156 ◽  
pp. 106298
Author(s):  
S. Burlawar ◽  
D.J. Klingenberg ◽  
T.W. Root ◽  
C.T. Scott ◽  
C.J. Houtman ◽  
...  

Author(s):  
Deana Qarizada ◽  
Erfan Mohammadian ◽  
Azil Bahari Alias ◽  
Humapar Azhar Rahimi ◽  
Suriatie Binti Mat Yusuf

Distillation is an essential thermo chemical process; it mainly depends on temperature which affects mostly the product yield and composition. The aim of this research is to investigate the effect of temperature on the characterization of bio-oil liquid fraction derived from palm kernel shell (PKS) bio-oil. The temperatures were 100 °C and 140°C. The higher heating value (HHV) obtained were 28.6MJ/Kg and 31.5MJ/Kg for bio-oil fraction 100°C and 140°C respectively. The GC- MS analysis determined that phenol is the dominant product in bio-oil fractions.


2018 ◽  
Vol 152 ◽  
pp. 01014 ◽  
Author(s):  
Yoon Li Wan ◽  
Yuen Jun Mun

Before the conversion of lignocellulosic biomass into fuel such as ethanol, the biomass needs to be pretreated and the yield of ethanol is highly dependent on the pretreatment efficiency. This study investigate the performance of deep eutectic solvent (DES) in pretreating sago waste which is a type of starchy biomass. The suitable type of DES in sago waste pretreatment was selected based on three criteria, which is the structural characteristic, the sugar yield during enzymatic hydrolysis and the amount of sugar loss during pretreatment. In this study, three types of DES namely Choline Chloride-Urea (ChCl-Urea), Choline Chloride-Citric acid (ChCl-CA) and Choline Chloride-Glycerol (ChCl-Glycerol) was investigated. The effect of temperature and duration on DES pretreatment was also investigated. All DES reagents were able to disrupt the structure and increase the porosity of sago waste during pretreatment. ChCl-Urea was selected in this study as it shows apparent structural disruption as examined under Scanning Electron Microscope (SEM). The highest glucose yield of 5.2 mg/mL was derived from enzymatic hydrolysis of ChCl-Urea pretreated sago waste. Moreover, reducing sugar loss during ChCl-Urea pretreatment was low, with only 0.8 mg/mL recorded. The most suitable temperature and duration for ChCl-Urea pretreatment is at 110°C and 3 hr. In a nutshell, the application of DES in pretreatment is feasible and other aspects such as the biodegradability and recyclability of DES is worth investigating to improve the economic feasibility of this pretreatment technique.


2019 ◽  
Vol 91 (7) ◽  
pp. 1177-1190
Author(s):  
Maria Margarida Mateus ◽  
Sandro Matos ◽  
Dinis Guerreiro ◽  
Paulo Debiagi ◽  
Daniela Gaspar ◽  
...  

Abstract Almond husk liquefaction can be envisaged as an alternative to fossil sources which are becoming exhausted. Lately, the polyols obtain from the lignocellulosic biomass have been under investigation for the production of sustainable chemicals, fuel, materials or other commodities. Within this context, acid-catalyzed liquefaction of such lignocellulosic biomass has been successfully used to access highly functionalized compounds that can be used to replace those produced from petroleum. Almond shells waste can be considered to be part of the lignocellulosic biomass. Its main constituents of are cellulose, hemicellulose, and lignin. In this assay, the biochemical composition of almond husk was estimated based on atomic mass balances, and at the same time, the pyrolysis outcome was also estimated using a kinetic model using some reference compounds. In order to evaluate the use of almond waste as a substrate for acid-catalyzed liquefaction, the most favorable conditions of the liquefaction process were investigated. To better understand the liquefaction process, response surface methodology, in particular, central composite face-centered factorial design was used to set an array of 17 experiments including three replications at the center point leading to the development of a reaction model for further prediction and optimization of the liquefaction outcome. The effect of temperature (120–150 °C), time (20–200 min) and catalyst amount (0.5–5 wt. %) was investigated and a predictive model established.


2014 ◽  
Vol 49 (6) ◽  
pp. 508-516 ◽  
Author(s):  
Behrooz Roozbehani ◽  
Bagher Anvaripour ◽  
Zahra Maghareh Esfahan ◽  
Mojtaba Mirdrikvand ◽  
Saeedeh Imani Moqadam

2018 ◽  
Vol 156 ◽  
pp. 03022 ◽  
Author(s):  
Diah Meilany ◽  
MTAP Kresnowati ◽  
Tjandra Setiadi

Biorefinery industry used lignocellulosic biomass as the raw material. Oil Palm Empty Fruit Bunch (OPEFB) is one of Indonesian potential lignocellulosic biomass, which consists of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. However, the structure of OPEFB is such that hemicellulose is protected in a way that will hinder hydrolysis enzyme to access it. Considering that hemicellulose is more susceptible to heat than cellulose, a hydrothermal process was applied to pre-treat OPEFB before it was hydrolyzed enzymatically. The aim of the research is to map the effect of temperature, solid loading and time of pre-treatment process to obtain and recover as much as possible accessible hemicellulose from OPEFB. The results showed that temperature gave more significant effect than time and solid loading for glucose recovery of OPEFB residues. While xylose recovery varies greatly with temperature, but solid loading and time gave less significant effect.


Sign in / Sign up

Export Citation Format

Share Document