scholarly journals Temperature, Solid Loading and Time Effects on Recovery of Sugar from OPEFB

2018 ◽  
Vol 156 ◽  
pp. 03022 ◽  
Author(s):  
Diah Meilany ◽  
MTAP Kresnowati ◽  
Tjandra Setiadi

Biorefinery industry used lignocellulosic biomass as the raw material. Oil Palm Empty Fruit Bunch (OPEFB) is one of Indonesian potential lignocellulosic biomass, which consists of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. However, the structure of OPEFB is such that hemicellulose is protected in a way that will hinder hydrolysis enzyme to access it. Considering that hemicellulose is more susceptible to heat than cellulose, a hydrothermal process was applied to pre-treat OPEFB before it was hydrolyzed enzymatically. The aim of the research is to map the effect of temperature, solid loading and time of pre-treatment process to obtain and recover as much as possible accessible hemicellulose from OPEFB. The results showed that temperature gave more significant effect than time and solid loading for glucose recovery of OPEFB residues. While xylose recovery varies greatly with temperature, but solid loading and time gave less significant effect.

2020 ◽  
Vol 10 (4) ◽  
pp. 1391 ◽  
Author(s):  
Diah Meilany ◽  
Made Tri Ari Penia Kresnowati ◽  
Tjandra Setiadi ◽  
Raj Boopathy

The hardest obstacle to make use of lignocellulosic biomass by using green technology is the existence of lignin. It can hinder enzyme reactions with cellulose or hemicellulose as a substrate. Oil palm empty fruit bunches (OPEFBs) consist of hemicellulose with xylan as the main component. Xylitol production via fermentation could use this xylan since it can be converted into xylose. Several pretreatment processes were explored to increase sugar recovery from lignocellulosic biomass. Considering that hemicellulose is more susceptible to heat than cellulose, the hydrothermal process was applied to OPEFB before it was hydrolyzed enzymatically. The purpose of this study was to investigate the effect of temperature, solid loading, and pretreatment time on the OPEFB hydrothermal process. The xylose concentration in OPEFB hydrolysate was analyzed using high-performance liquid chromatography (HPLC). The results indicated that temperature was more important than pretreatment time and solid loading for OPEFB sugar recovery. The optimum temperature, solid loading, and pretreatment time for maximum xylose recovery from pretreated OPEFB were 165 °C, 7%, and 60 min, respectively, giving a xylose recovery of 0.061 g/g of pretreated OPEFB (35% of OPEFB xylan was recovered).


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4288 ◽  
Author(s):  
Alessandro Bertini ◽  
Mattia Gelosia ◽  
Gianluca Cavalaglio ◽  
Marco Barbanera ◽  
Tommaso Giannoni ◽  
...  

Cardoon (Cynara cardunculus) is a promising crop from which to obtain oilseeds and lignocellulosic biomass. Acid-catalyzed steam explosion is a thermochemical process that can efficiently pre-treat lignocellulosic biomass. The drawback is the production of a high number of carbohydrate degradation products in the liquid fraction that could inhibit microbial growth. In this work, the lignocellulosic biomass of cardoon, gathered from a dedicated field, were used as the raw material for the production of fermentable monosaccharides by employing acid-catalyzed steam explosion. The raw material was pre-soaked with a dilute 1% (w/w) sulfuric acid solution and then subjected to steam explosion under three different severity conditions. The recovered slurry was separated into solid and liquid fractions, which were individually characterized to determine total carbohydrate and inhibitor concentrations. The slurry and the washed solid fraction underwent enzymatic hydrolysis to release glucose and pentose monosaccharides. By conducting the pre-treatment at 175 °C for 35 min and hydrolyzing the obtained slurry, a yield of 33.17 g of monosaccharides/100 g of cardoon was achieved. At the same conditions, 4.39 g of inhibitors/100 g of cardoon were produced.


2019 ◽  
Vol 9 (18) ◽  
pp. 3853 ◽  
Author(s):  
Banafsha Ahmed ◽  
Kaoutar Aboudi ◽  
Vinay Kumar Tyagi ◽  
Carlos José Álvarez-Gallego ◽  
Luis Alberto Fernández-Güelfo ◽  
...  

Lignocellulosic biomass, comprising of cellulose, hemicellulose, and lignin, is a difficult-to-degrade substrate when subjected to anaerobic digestion. Hydrothermal pretreatment of lignocellulosic biomass could enhance the process performance by increasing the generation of methane, hydrogen, and bioethanol. The recalcitrants (furfurals, and 5-HMF) could be formed at high temperatures during hydrothermal pretreatment of lignocellulosic biomass, which may hinder the process performance. However, the detoxification process involving the use of genetically engineered microbes may be a promising option to reduce the toxic effects of inhibitors. The key challenge lies in the scaleup of the hydrothermal process, mainly due to necessity of upholding high temperature in sizeable reactors, which may demand high capital and operational costs. Thus, more efforts should be towards the techno-economic feasibility of hydrothermal pre-treatment at full scale.


2018 ◽  
Vol 40 (4) ◽  
pp. 50-57
Author(s):  
А.A. Dolinskyi ◽  
O. M. Obodovych ◽  
V.V. Sydorenko

The paper presents an overview of bioetanol production technologies. It is noted that world fuel ethanol production in 2017 amounted to more than 27,000 million gallons (80 million tons). Eight countries, namely the USA, Brazil, the EU, China, Canada, Thailand, Argentina, India, together produce about 98% of bioethanol. In Ukraine, the volume of bioethanol production by alcoholic factories in recent years has been gradually increasing and amounted to 2,992.8 ths. dal in 2017. The production of ethanol as an additive to gasoline, with regard to the raw materials used, as well as the corresponding technologies, is historically divided into three generations. The first generation of biofuels produced from food crops rich in sugar or starch is currently dominant. Production of advanced biofuels from non-food crop feedstocks is limited. Output is anticipated to remain modest in the short term, as progress is needed to improve technology readiness. The main stages of bioethanol production from lignocellulosic raw materials are pre-treatment, enzymatic hydrolysis and fermentation. The pre-treatment process aims to reduce of sizes of raw material particles, provision of the components exposure (hemicellulose, cellulose, starch), provision of better access for the enzymes (in fermentative hydrolysis) to the surface of raw materials, and reduction of crystallinity degree of the cellulose matrix. The pre-treatment process is a major cost component of the overall process. The pre-treatment process is highly recommended as it gives subsequent or direct yield of the fermentable sugars, prevents premature degradation of the yielded sugars, prevents inhibitors formation prior hydrolysis and fermentation, lowers the processing cost, and lowers the demand of conventional energy in general. From the perspective of efficiency, promising methods of pre-treatment of lignocellulosic raw materials to hydrolysis are combined methods combining mechanical, chemical and physical mechanisms of influence on raw materials. One method that combines several physical effects on a treated substance is the discrete-pulsed energy input (DPIE) method. The DPIE method can be applied in the pre- treatment of lignocellulosic raw material in the technology bioethanol production for intensifying the process and reducing energy consumption. Ref. 15, Fig. 2.


Author(s):  
John Odhiambo Otieno ◽  
Fredrick Onyango Ogutu

Lignocellulosic biomass is the earth’s most abundant and renewable resource, and, lignin is its strongest component. The lignocellulosic biomass has a potential to produce bioethanol for both domestic and industrial use. The presence of lignin in the biomass, however, hinders the processing and production of bioethanol from the biomass. Hence, to enhance the chances of bioethanol production from the lignocellulosic biomass, lignin has to be pre-treated. The pre-treatment process efficiently separates the interlinked complex components. During the pre-treatment process, the strong lignin component that is highly resistant and a major barrier to solubilization is broken down by hydrolysis of cellulose and hemicellulose. Pre-treatment of lignocellulosic biomass is therefore, necessary to make it more susceptible to microorganisms, enzymes, and pathogens. The initial pre-treatment approaches include physical, physicochemical, and biological methods. The major drawback of this pre-treatment process is its cost implications, as it’s very costly. Studies suggest that even though it’s a costly affair, the pre-treatment methods, however, have a significant impact on the efficient production of ethanol from biomass. Situation Analysis: Bioethanol production from lignocellulosic biomass has mostly been undertaken in Brazil, USA, China, and India. In Kenya, however, little research on bioethanol production from lignocellulosic biomass has been done and adopted. The present review paper seeks to outlay the benefits of bioethanol production from lignocellulosic biomass, the composition of lignocellulosic biomass, its properties, different pre-treatment methods alongside advantages, and, disadvantages, and challenges encountered during bioethanol production. This review eventually will be of great assistance to researchers while developing bioethanol from different lignocellulosic biomass. Research, technology adaption/adaptation, and policy targeted at growing bioethanol industry, could enable Kenya to grow her bioethanol industry.


2017 ◽  
Vol 8 (5) ◽  
pp. 262-265
Author(s):  
Truong Giang Nguyen ◽  
Thi Nga Nguyen ◽  
Thi Tuyet Vu ◽  
Thi Ngoan Bui

Gelatin is increasingly becoming an important raw material in many different fields. The pretreatment stage of the production of gelatin from pork skin plays an important role, it has big effect on the quality of obtained products. A survey on 5 types of acid HCl, H2SO4, H3PO4, CH3COOH, Citric was conducted. It showed that the influence of these types of acid on the pretreatment process was different. Acetic acid made the best result with the protein after extraction reaching 54.88 mg/ml, the product bloom reached 223. The most appropriate proportion of acetic acid was 3%. A survey on the effect of soaking time on the capacity of extraction was conducted. The result showed that the 16-hour extraction brought the best result reaching 56.16 mg/ml, the product bloom reached 245. The most suitable proportion of soaking pork skin:acid was 1:2. The most appropriate temperature of acid immersion was 15°C, at which the protein after extraction reached 68.39 mg/ml, the product bloom reached 299, the viscosity reached 23 mPas. Gelatin ngày càng trở thành nguồn nguyên liệu quan trọng trong nhiều lĩnh vực khác nhau. Giai đoạn tiền xử lý của việc sản xuất gelatin từ bì lợn đóng vai trò quan trọng và có ảnh hưởng lớn tới chất lượng sản phẩm thu được. Khảo sát 5 loại axit: HCl, H2SO4, H3PO4, CH3COOH, Citric, thấy rằng ảnh hưởng của các loại axit này trong quá trình tiền xử lý là khác nhau. Axit axetic cho kết quả tốt nhất với hàm lượng protein sau trích ly đạt 54,88 mg/ml, độ bloom sản phẩm đạt 223. Nồng độ thích hợp nhất của axit axetic là 3%. Khảo sát ảnh hưởng của thời gian ngâm đến khả năng trích ly thấy rằng 16 giờ cho kết quả tốt nhất đạt 56,16 mg/ml, độ bloom sản phẩm đạt 245. Tỷ lệ ngâm bì lợn: axit thích hợp nhất là 1:2. Nhiệt độ ngâm axit thích hợp nhất là 15oC, tại đó hàm lượng protein sau trích ly đạt 68,39 mg/ml, độ bloom sản phẩm đạt 299, độ nhớt đạt 23 mPs.


2019 ◽  
Vol 74 (4) ◽  
pp. 1199-1209 ◽  
Author(s):  
Karolina Kucharska ◽  
Edyta Słupek ◽  
Hubert Cieśliński ◽  
Marian Kamiński

Abstract Processing of lignocellulosic biomass includes four major unit operations: pre-treatment, hydrolysis, fermentation and product purification prior to biofuel generation via anaerobic digestion. The microorganisms involved in the fermentation metabolize only simple molecules, i.e., monosugars which can be obtained by carrying out the degradation of complex polymers, the main component of lignocellulosic biomass. The object of this paper was to evaluate the saccharification conditions and identify the process parameters that should be applied to improve the saccharification efficiency of lignocellulosic biomass, defined as the simple sugars concentration, which was considered as a crucial parameter for hydrogen generation via dark fermentation. Drawing global conclusions about the occurring changes in the biomass requires learning about the nature of the biomass structure and composition at different stages of the process. Therefore, techniques for analysis, as FTIR, HPLC and SEM were applied. The experiment was planned employing Box–Behnken design. The advantageous operating conditions and the composition of saccharification enzymatic cocktail were identified and their values occurred similar in the applied border conditions for all tested biomass types. Analysis of the intermediate solid and liquid streams generated during the pre-treatment procedure revealed several structural and compositional changes in the biomass.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Qibo Zhang ◽  
Lu Cheng ◽  
Xutong Ma ◽  
Xin Zhou ◽  
Yong Xu

Abstract Background Sunflower stalk pith, residue from the processing of sunflower, is rich in pectin and cellulose, thereby acting as an economic raw material for the acquisition of these compounds. In order to increase the commercial value of sunflower processing industry, a two-step dilute sulfuric acid treatment process was conducted on spent sunflower stalk pith to obtain the value-added products, pectin and glucose. Results In this study, pectin was firstly extracted under mild acid condition to avoid pectin degradation, which was conducted at 90 °C with a pH of 2.0 for 2 h, and ~0.14 g/g of pectin could be recovered. Then the remaining solids after pectin extraction were subjected to the reinforced treatment process with 0.75% H2SO4 at 150 °C for 30 min to further improve enzymatic hydrolysis efficiency. Moreover, by combining a fed-batch enzymatic hydrolysis strategy, a solid loading content of 16% was successfully achieved and the glucose titer reached 103.1 g/L with a yield of 83.6%. Conclusion Finally, ~140 g pectin and 260 g glucose were produced from 1 kg of raw sunflower stalk pith using the integrated biorefinery process. This work puts forward a two-step dilute acid pretreatment combined with enzymatic hydrolysis method to produce pectin and glucose from sunflower spent waste.


2018 ◽  
Vol 42 ◽  
pp. 01012 ◽  
Author(s):  
Devita Rachmat ◽  
Aprillia D. Agustin ◽  
Doty D. Risanti

The purity level of waste cooking oil that use as raw material for biodiesel production has a strong influence on its fuel properties. In this study, activated carbon from cocoa pod husk activated with was used for purification in pre-treatment process of biodiesel production. The result showed that the activated carbon can decrease the water content and FFA and produce well-characterized biodiesel correspond to the Indonesian National Standard requirement.


1986 ◽  
Vol 18 (9) ◽  
pp. 163-173
Author(s):  
R. Boll ◽  
R. Kayser

The Braunschweig wastewater land treatment system as the largest in Western Germany serves a population of about 270.000 and has an annual flow of around 22 Mio m3. The whole treatment process consists of three main components : a pre-treatment plant as an activated sludge process, a sprinkler irrigation area of 3.000 ha of farmland and an old sewage farm of 200 ha with surface flooding. This paper briefly summarizes the experiences with management and operation of the system, the treatment results with reference to environmental impact, development of agriculture and some financial aspects.


Sign in / Sign up

Export Citation Format

Share Document