scholarly journals Assessment of the Physico-Chemical Properties of Waste Cooking Oil and Spent Coffee Grounds Oil for Potential Use as Asphalt Binder Rejuvenators

2017 ◽  
Vol 9 (11) ◽  
pp. 2125-2132 ◽  
Author(s):  
Rita Jalkh ◽  
Houssam El-Rassy ◽  
Ghassan R. Chehab ◽  
Mohamad G. Abiad
Fuel ◽  
2019 ◽  
Vol 244 ◽  
pp. 419-430 ◽  
Author(s):  
A.E. Atabani ◽  
Sutha Shobana ◽  
M.N. Mohammed ◽  
Gediz Uğuz ◽  
Gopalakrishnan Kumar ◽  
...  

2022 ◽  
Vol 34 (2) ◽  
pp. 319-323
Author(s):  
K.A. Viraj Miyuranga ◽  
Udara S.P.R. Arachchige ◽  
Danushka Thilakarathne ◽  
Randika A. Jayasinghe ◽  
Nuwan A. Weerasekara

Biodiesel is a renewable fuel with similar chemical and physical properties to diesel. The study used waste cooking oil to make biodiesel because reusing waste cooking oil harms human health by raising FFA levels above the norm. Transesterification was performed at 60 °C using a 1:5 methanol to waste cooking oil volume ratio, 30 min reaction time, 600 rpm stirring speed and 1% wt. KOH was employed as a homogenous base catalyst. Biodiesel samples of B0, B2, B5, B20, B40 and B100 were processed at 25 ºC in combination with petrodiesel. Samples were tested for density, kinetic viscosity, flash point, acid value and pH. The fuel economy and flue gas analysis were performed using three-wheeler diesel. The amount of waste cooking oil biodiesel increases the density, kinematic viscosity, flash point, acid value and pH of the sample. In blended diesel, the amount of biodiesel also lowered CO2, CO, NO, NOx, hydrocarbon (HC) and SO2 emissions.


2021 ◽  
Vol 7 (3) ◽  
pp. 502-517
Author(s):  
Munder Bilema ◽  
Yusri Bin Aman ◽  
Norhidayah Abdul Hassan ◽  
Zaid Al-Saffar ◽  
Kabiru Ahmad ◽  
...  

High demand for asphalt binders in road construction verifies the need of finding alternative materials through asphalt pavement recycling. This paper investigated the impact of different rejuvenators on the performance of an aged asphalt binder. Virgin Olive oil, virgin cooking oil, waste cooking oil, virgin engine oil, and waste engine oil were added to a 30/40 penetration grade aged asphalt binder at a fixed oil content of 4% for all types. The wet method was used to blend the rejuvenators and aged asphalt binder. The physical, rheological, and chemical properties of the rejuvenated asphalt binder were evaluated using several laboratory tests which include penetration, softening point, bleeding, loss on heating, storage stability, penetration index, ductility, viscosity, dynamic shear rheometer, and Fourier transform infrared spectroscopy. The outcomes of the physical properties showed that the olive, waste, and virgin cooking rejuvenators can restore the aged asphalt binder to a penetration grade of 60/70. In contrast, the virgin and waste engine oil required a more quantity of oil to rejuvenate the aged asphalt binder. A sufficient amount of rejuvenator could regenerate the (G*/sin δ), (δ°), and (G*) for the aged asphalt binder. The addition of virgin olive and cooking oils in aged asphalt led to a rutting issue. No chemical reactions were observed with the addition of rejuvenators but they give an impact on reducing the oxidation level of the aged asphalt binder. As a result, further research should be performed on waste cooking oil given that it is inexpensive and provides excellent performance results. Doi: 10.28991/cej-2021-03091669 Full Text: PDF


2020 ◽  
Vol 5 (1) ◽  
pp. 95-108
Author(s):  
Annisa Bhikuning ◽  
Jiro Senda Senda

Studying biodiesel as an alternative fuel is important for finding the most suitable fuel for the future. Biodiesel from waste cooking oil is one of the alternative fuels to replace fossil oil. Waste cooking oil is the used oil from cooking and is taken from hotels or restaurants. The emulsion of waste cooking oil and water is produced by adding water to the oil, as well as some additives to bind the water and the oil. In this study, the fuel properties of 100% biodiesel waste cooking oil  are compared to several blends by volume: 5% of biodiesel waste cooking oil blended with 95% diesel oil (BD5), 10% of biodiesel waste cooking oil blended with 90% of diesel oil (BD10), 5% of biodiesel waste cooking oil blended with 10% of water and 18.7% of additives (BDW18.7), and 5% of biodiesel waste cooking oil blended with 10% of water and 24.7% of additives (BDW24.7). The objectives of this study are to establish the properties and characteristics of the FTIR (Fourier-transform infrared spectroscopy) of biodiesel-water emulsions from waste cooking oil and to compare them to other fuels. The chemical properties of the fuels are analyzed by using the ASTM D Method and FTIR  to determine the FAME (fatty acid methyl ester) composition of biodiesel in diesel oil. The results showed that the addition of additives in the water-biodiesel oil increases the viscosity, density, and flash point. However, it decreased the caloric value due to the oxygen content in the fuel.


Abundant of waste cooking oil (WCO) production can cause prominent adverse impact and threat to the environment if not properly managed and disposed. Therefore, recycling or reusing WCO in modified asphalt binder is considered as an effective utilisation and environmental benefits. Hence, this study was to evaluate the chemical characteristic of untreated and treated WCO in modified binder through X-Ray diffraction analysis. The results indicated that the amorphous structure was present in the control and modified binders with untreated and treated WCO. The flat trends tabulated in XRD graph for modified binder depicted the uniform dispersion and homogeneous solution was achieved between the untreated and treated WCO with the asphalt binder during mixing process.


2016 ◽  
Vol 700 ◽  
pp. 197-206 ◽  
Author(s):  
Wan Nur Aifa Wan Azahar ◽  
Mastura Bujang ◽  
Ramadhansyah Putra Jaya ◽  
Mohd Rosli Hainin ◽  
Norzita Ngadi ◽  
...  

Aging process especially in asphalt binder material can occur throughout the life cycle of asphalt pavement starting from mixing, placement and during the service life. During this process, the more stiffer and brittle of asphalt binder is produced due to age hardening and gives an indication of initial factor of deterioration in asphalt pavement. A number of noteworthy researchers have focused on oil based modification to produce modified asphalt binder by using Waste Cooking Oil (WCO), due to the presence of natural antioxidant properties possessed in WCO. Antioxidant has played the role as an oxidative inhibition and has the potential to minimize the aging rate to occur. The aging process is conducted by separating between short term and long term aging where short term oxidative aging of binders was simulated using rolling thin film oven (RTFO) while long term aging was performed using pressure aging vessel (PAV). The laboratory evaluation was carried out to investigate the relationship between the qualities of WCO that affect the availability of antioxidant amount towards the susceptibility of aging rate by conducting Dynamic Shear Rheometer (DSR). The result from rheological studies demonstrated that the lowest Aging Index (AI) is presented as 2.14, 2.18 and 1.79 for replacement by using WCO in December sample at concentration of 3%, 4% and 5% for short term aging while AI at 3% = 5.17 and 5% = 7.22 for long term aging. Therefore, the high quality of oil represented by WCO in December sample has indicated the high availability of antioxidant content that can minimize the aging susceptibility in the asphalt binder modified by WCO.


Sign in / Sign up

Export Citation Format

Share Document