scholarly journals Hydrothermal Carbonization of Organic Waste and Biomass: A Review on Process, Reactor, and Plant Modeling

Author(s):  
Giulia Ischia ◽  
Luca Fiori

Abstract Hydrothermal carbonization (HTC) is an emerging path to give a new life to organic waste and residual biomass. Fulfilling the principles of the circular economy, through HTC “unpleasant” organics can be transformed into useful materials and possibly energy carriers. The potential applications of HTC are tremendous and the recent literature is full of investigations. In this context, models capable to predict, simulate and optimize the HTC process, reactors, and plants are engineering tools that can significantly shift HTC research towards innovation by boosting the development of novel enterprises based on HTC technology. This review paper addresses such key-issue: where do we stand regarding the development of these tools? The literature presents many and simplified models to describe the reaction kinetics, some dealing with the process simulation, while few focused on the heart of an HTC system, the reactor. Statistical investigations and some life cycle assessment analyses also appear in the current state of the art. This work examines and analyzes these predicting tools, highlighting their potentialities and limits. Overall, the current models suffer from many aspects, from the lack of data to the intrinsic complexity of HTC reactions and HTC systems. Therefore, the emphasis is given to what is still necessary to make the HTC process duly simulated and therefore implementable on an industrial scale with sufficient predictive margins. Graphic Abstract

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3841
Author(s):  
Merbin John ◽  
Prasad Rao Kalvala ◽  
Manoranjan Misra ◽  
Pradeep L. Menezes

Surface modification methods have been applied to metals and alloys to change the surface integrity, obtain superior mechanical properties, and improve service life irrespective of the field of application. In this review paper, current state-of-the-art of peening techniques are demonstrated. More specifically, classical and advanced shot peening (SP), ultrasonic impact peening (UIP), and laser shock peening (LSP) have been discussed. The effect of these techniques on mechanical properties, such as hardness, wear resistance, fatigue life, surface roughness, and corrosion resistance of various metals and alloys, are discussed. This study also reports the comparisons, advantages, challenges, and potential applications of these processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yangfan Xu ◽  
Xianqun Fan ◽  
Yang Hu

AbstractEnzyme-catalyzed proximity labeling (PL) combined with mass spectrometry (MS) has emerged as a revolutionary approach to reveal the protein-protein interaction networks, dissect complex biological processes, and characterize the subcellular proteome in a more physiological setting than before. The enzymatic tags are being upgraded to improve temporal and spatial resolution and obtain faster catalytic dynamics and higher catalytic efficiency. In vivo application of PL integrated with other state of the art techniques has recently been adapted in live animals and plants, allowing questions to be addressed that were previously inaccessible. It is timely to summarize the current state of PL-dependent interactome studies and their potential applications. We will focus on in vivo uses of newer versions of PL and highlight critical considerations for successful in vivo PL experiments that will provide novel insights into the protein interactome in the context of human diseases.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3949
Author(s):  
Mattia Frascio ◽  
Eduardo André de Sousa Marques ◽  
Ricardo João Camilo Carbas ◽  
Lucas Filipe Martins da Silva ◽  
Margherita Monti ◽  
...  

This review aims to assess the current modelling and experimental achievements in the design for additive manufacturing of bonded joints, providing a summary of the current state of the art. To limit its scope, the document is focused only on polymeric additive manufacturing processes. As a result, this review paper contains a structured collection of the tailoring methods adopted for additively manufactured adherends and adhesives with the aim of maximizing bonded joint performance. The intent is, setting the state of the art, to produce an overview useful to identify the new opportunities provided by recent progresses in the design for additive manufacturing, additive manufacturing processes and materials’ developments.


Author(s):  
Douglas Coelho Braga de Oliveira ◽  
Rodrigo Luis de Souza da Silva

Augmented Reality (AR) systems based on the Simultaneous Localization and Mapping (SLAM) problem have received much attention in the last few years. SLAM allows AR applications on unprepared environments, i.e., without markers. However, by eliminating the marker object, we lose the referential for virtual object projection and the main source of interaction between real and virtual elements. In the recent literature, we found works that integrate an object recognition system to the SLAM in a way the objects are incorporated into the map. In this work, we propose a novel optimization framework for an object-aware SLAM system capable of simultaneously estimating the camera and moving objects positioning in the map. In this way, we can combine the advantages of both marker- and SLAM-based methods. We implement our proposed framework over state-of-the-art SLAM software and demonstrate potential applications for AR like the total occlusion of the marker object.


2021 ◽  
Author(s):  
Gema Vera Gonzalez ◽  
Phatsimo Kgwarae ◽  
Luca Annecchino ◽  
Simon Schultz

A review paper on the current state of the art in robotic automation of in vivo patch-clamp electrophysiology


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sarah E. Norred ◽  
Jacqueline Anne Johnson

Magnetic resonance-guided laser induced thermotherapy (MRgLITT) has become an increasingly relevant therapy for tumor ablation due to its minimally invasive approach and broad applicability across many tissue types. The current state of the art applies laser irradiation via cooled optical fiber applicators in order to generate ablative heat and necrosis in tumor tissue. Magnetic resonance temperature imaging (MRTI) is used concurrently with this therapy to plan treatments and visualize tumor necrosis. Though application in neurosurgery remains in its infancy, MRgLITT has been found to be a promising therapy for many types of brain tumors. This review examines the current use of MRgLITT with regard to the special clinical challenge of glioblastoma multiforme and examines the potential applications of next-generation nanotherapy specific to the treatment of glioblastoma.


2003 ◽  
Vol 10 (01) ◽  
pp. 127-146 ◽  
Author(s):  
J. C. ARNAULT

The potential applications of diamond in the field of electronics working under high power and high temperature (aeronautic, aerospace, etc.) require highly oriented films on heterosubstrates. This is the key motivation of the huge research efforts that have been carried out during the last ten years. Very significant progress has been accomplished and nowadays diamond films with misorientations close to 1.5° are elaborated on β-SiC monocrystals. Moreover, an excellent crystalline quality with polar and azimuthal misalignments lower than 0.6° is reported for diamond films grown on iridium buffer layers. Unfortunately, these films are still too defective for high power electronics applications. To achieve higher crystalline quality, further improvements of the deposition methods are needed. Nevertheless, a deeper knowledge of the elemental mechanisms occurring during the early stages of growth is also essential. The first part of this paper focuses on the state of the art of the different investigated ways towards heteroepitaxy. Secondly, the present knowledge of the early stages of diamond nucleation and growth on silicon substrates for both classical nucleation and bias-assisted nucleation (BEN) is reviewed. Finally, the remaining questions concerning the understanding of the nucleation processes are discussed.


Aerospace ◽  
2019 ◽  
Vol 6 (9) ◽  
pp. 98 ◽  
Author(s):  
Zachary Lewis ◽  
Joshua Ten Eyck ◽  
Kyle Baker ◽  
Eryn Culton ◽  
Jonathan Lang ◽  
...  

The novel contribution in this manuscript is an expansion of the current state-of-the-art in the geometric installation of control moment gyroscopes beyond the benchmark symmetric skewed arrays and the four asymmetric arrays presented in recent literature. The benchmark pyramid symmetrically skewed at 54.73 degrees mandates significant attention to singularity avoidance, escape, and penetration, while the most recent four asymmetric arrays are strictly useful in instances where space is available to mount at least one gyro orthogonal to the others. Skewed arrays of gyros and the research-benchmark are introduced, followed by the present-day box-90 and “roof” configurations, where the roof configuration is the first prevalently used asymmetric geometry. Six other asymmetric options in the most recent literature are introduced, where four of the six options are obviously quite useful. From this inspiration, several dozen discrete options for asymmetric installations are critically evaluated using two figures of merit: maximum momentum (saturation) and maximum singularity-free momentum. Furthermore, continuous surface plots are presented to provide readers with countless (infinite) options for geometric installations. The manuscript firmly establishes many useful options for engineers who learn that the physical space on their spacecraft is insufficient to permit standard installations.


2021 ◽  
Vol 13 (22) ◽  
pp. 12600
Author(s):  
René A. Garrido ◽  
Camila Lagos ◽  
Carolina Luna ◽  
Jaime Sánchez ◽  
Georgina Díaz

A myriad of resources and efforts have been devoted to assessing the possibilities of using locally sourced biomass to produce energy, reduce CO2 emissions, and, in turn, lower dependance on petroleum. Grape pomace (GP) and walnut shells (WS) are organic waste generated in Chile. Within the last decade, the potential benefits and application of biomass have received significant attention, both in terms of producing functionalized carbon materials, and the various potential applications in the field of energy storage and environmental protection. The proposed research motivation is on the development of carbonous materials through thermal decomposition processes. Few researchers have addressed the idea of developing a multipurpose carbonaceous matrix from hydrochar, and there remains a need for an efficient method to obtain hydrochar specially from grape pomace. Hence, the general objective of this research is to study the potential of grape pomace and walnut shells treated with hydrothermal carbonization (HTC) as an alternative low-cost and efficient carbonous matrix. Proximate and elemental analysis was determined to distinguish the nature of the feedstock along with the hydrochar produced. Yield and reaction severity were also studied to study the impacts of temperature and residence time for both feedstocks. Successful results from the proposed work have broad applications for increasing the sustainability biomass applications, contributing to a positive economic impact.


Author(s):  
Daniela A. TERRIBILE ◽  
Elena J. MASON ◽  
Federica MURANDO ◽  
Alba DI LEONE ◽  
Alejandro M. SANCHEZ ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document