Embedding a back propagation network into fuzzy c-means for estimating job cycle time: wafer fabrication as an example

2015 ◽  
Vol 7 (6) ◽  
pp. 789-800 ◽  
Author(s):  
Toly Chen
Author(s):  
T Chen

A post-classifying fuzzy-neural approach is proposed in this study for estimating the remaining cycle time of each job in a wafer fabrication plant, which has seldom been investigated in past studies but is a critical task for the wafer fabrication plant. In the methodology proposed, the fuzzy back-propagation network (FBPN) approach for job cycle time estimation is modified with the proportional adjustment approach to estimate the remaining cycle time instead. Besides, unlike existing cycle time estimation approaches, in the methodology proposed a job is not preclassified but rather post-classified after the estimation error has been generated. For this purpose, a back-propagation network is used as the post-classification algorithm. To evaluate the effectiveness of the methodology proposed, production simulation is used in this study to generate some test data. According to experimental results, the accuracy of estimating the remaining cycle time could be improved by up to 64 per cent with the proposed methodology.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Toly Chen ◽  
Yi-Chi Wang

This paper proposes a fuzzy slack-diversifying fluctuation-smoothing rule to enhance the scheduling performance in a wafer fabrication factory. The proposed rule considers the uncertainty in the remaining cycle time and is aimed at simultaneous improvement of the average cycle time, cycle time standard deviation, the maximum lateness, and number of tardy jobs. Existing publications rarely discusse ways to optimize all of these at the same time. An important input to the proposed rule is the job remaining cycle time. To this end, this paper proposes a self-adjusted fuzzy back propagation network (SA-FBPN) approach to estimate the remaining cycle time of a job. In addition, a systematic procedure is also established, which can solve the problem of slack overlapping in a nonsubjective way and optimize the overall scheduling performance. The simulation study provides evidence that the proposed rule can improve the four performance measures simultaneously.


2012 ◽  
Vol 2 (2) ◽  
pp. 50-67 ◽  
Author(s):  
Toly Chen

Variable replacement is a well-known technique to improve the forecasting performance, but has not been applied to the job cycle time forecasting, which is a critical task to a semiconductor manufacturer. To this end, in this study, principal component analysis (PCA) is applied to enhance the forecasting performance of the fuzzy back propagation network (FBPN) approach. First, to replace the original variables, PCA is applied to form variables that are independent of each other, and become new inputs to the FBPN. Subsequently, a FBPN is constructed to estimate the cycle times of jobs. According to the results of a case study, the hybrid PCA-FBPN approach was more efficient, while achieving a satisfactory estimation performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Toly Chen ◽  
Yi-Chi Wang

Estimating the cycle time of each job in a wafer fabrication factory is a critical task to every wafer manufacturer. In recent years, a number of hybrid approaches based on job classification (either preclassification or postclassification) for cycle time estimation have been proposed. However, the problem with these methods is that the input variables are not independent. In order to solve this problem, principal component analysis (PCA) is considered useful. In this study, a classifying fuzzy-neural approach, based on the combination of PCA, fuzzy c-means (FCM), and back propagation network (BPN), is proposed to estimate the cycle time of a job in a wafer fabrication factory. Since job classification is an important part of the proposed methodology, a new index is proposed to assess the validity of the classification of jobs. The empirical relationship between theSvalue and the estimation performance is also found. Finally, an iterative process is employed to deal with the outliers and to optimize the overall estimation performance. A real case is used to evaluate the effectiveness of the proposed methodology. Based on the experimental results, the estimation accuracy of the proposed methodology was significantly better than those of the existing approaches.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1430
Author(s):  
Yu-Cheng Wang ◽  
Horng-Ren Tsai ◽  
Toly Chen

Forecasting the cycle time of each job is a critical task for a factory. However, recent studies have shown that it is a challenging task, even with state-of-the-art deep learning techniques. To address this challenge, a selectively fuzzified back propagation network (SFBPN) approach is proposed to estimate the range of a cycle time, the results of which provide valuable information for many managerial purposes. The SFBPN approach is distinct from existing methods, because the thresholds on both the hidden and output layers of a back propagation network are fuzzified to tighten the range of a cycle time, while most of the existing methods only fuzzify the threshold on the output node. In addition, a random search and local optimization algorithm is also proposed to derive the optimal values of the fuzzy thresholds. The proposed methodology is applied to a real case from the literature. The experimental results show that the proposed methodology improved the forecasting precision by up to 65%.


Sign in / Sign up

Export Citation Format

Share Document