Options for the future: balancing urban water supply and demand in Beijing

Water Policy ◽  
2006 ◽  
Vol 8 (2) ◽  
pp. 97-110 ◽  
Author(s):  
Can Wang ◽  
Camilla Dunham Whitehead ◽  
Jining Chen ◽  
Xiaomin Liu ◽  
Junying Chu

Beijing is facing the considerable challenge of water shortage, as it is just able to meet current water demand in a year with average precipitation and a shortfall between water supply and demand is estimated to be around 1.8 billion[109] cubic meters (BCM) by 2010. Aiming to find the solution to such a severe challenge, this paper investigates Beijing's current and future water resources availability and water-use configurations, as well as past and current effort on both areas of water supply and demand. The analysis shows a continuously growing demand for water and an aggravating deficit of traditionally available water resources. The paper concludes that it is necessary to establish well-structured water-use data and employ more advanced forecasting methods if sound future decisions regarding water balance are expected to be made. In order to realize Beijing Municipality's full urban water conservation potential, it is suggested that a comprehensive and integrated long-term conservation program be implemented, which is technically feasible and economically justified, to conserve water consistently for many years.

Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


2018 ◽  
Vol 246 ◽  
pp. 01006
Author(s):  
Jigang Ma ◽  
Haofang Wang ◽  
Libin Zhao ◽  
Song Wei

Water resources optimal regulation is an important means to mitigate the shortage of water resources and promote social and economic sustainable development in regions or watershed. With the rapid development of urban population and industrial and agricultural production in recent years, the shortage of water is becoming more and more serious in Jiaodong area. The four regions with serious water shortage including Weifang, Qingdao, Yantai and Weihai in Jiaodong area are the typical research areas. In combination with the water transfer project of Yellow river to Qingdao and the south-to-north water transfer project, the water diversion is carried out to alleviate the contradiction between water supply and demand of Jiaodong area. The year of 2014 deemed as the base year and the years of 2020 and 2025 are the planning years. Based on the supply and demand analysis of water resources, an optimal regulation model is built with the minimum total water shortage considering the constraints of water supply capacity of project, water distribution capacity and minimum water supply of bleeds and so on. The optimal regulation schemes are obtained by solution model using MATLAB programming. The results show that water shortage rate of the four cities decreases significantly in annual regulation. For different planning years, guarantee rate of 50%, 75% and 95%,the total water shortage rate will be reduced by 15.35%、15.75% and 16.85% respectively in 2020, and in 2025the total water shortage rate will be reduced by 13.27%、13.26% and 14.19% respectively. Therefore the water resources optimal regulation of inter-basin water transfer project can effectively mitigate water scarcity and the contradiction between water supply and demand in Jiaodong area.


2012 ◽  
Vol 524-527 ◽  
pp. 2731-2734
Author(s):  
Chen Xia Gu

As socio-economic is developing rapidly, the problems between water resource supply and demand is prominent. Small inter-basin water transfer is gradually increasing in order to solve water shortage. In this paper, the development position of regional socio-economic, the potential of water resources, water supply and demand balance are discussed, the necessity of inter-basin transfers project is studied and discussed comprehensively, the conclusion is authentic, and the method of this paper has reference for similar project.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1085 ◽  
Author(s):  
Boyang Sun ◽  
Xiaohua Yang

In order to comprehensively evaluate the water resources carrying capacity in Xiong’an New Area, a system dynamics (SD) model was established to evaluate the regional water resources carrying capacity, for which several scenarios were designed: the original development scenario, the accelerated industrialization scenario, the environmental governance scenario, and the optimization development scenario. The results show that, compared with the original development scenario, the water resources carrying capacity in Xiong’an New Area can be improved in other scenarios, but a water supply and demand gap will be generated due to the lack of groundwater overdraft and a water transfer project. In 2026, under the accelerated industrialization scenario, the population carrying capacity will be 2.652 million, and the water supply and demand gap will be 1.13 × 108 m3; under the environmental governance scenario, the population carrying capacity will be 2.36 million, and the water supply and demand gap will be 0.44 × 108 m3; under the optimal development scenario, the population carrying capacity will be 2.654 million, and since the supply of water resources will be greater than the demand, there will not be a gap between supply and demand, making it the most feasible scenario to effectively alleviate the tension between industry restructuring, environmental management, and water resources development and utilization. The findings of this study can provide reference and decision support for optimizing regional water resources allocation and enhancing water resources carrying capacity in Xiong’an New Area.


2014 ◽  
Vol 501-504 ◽  
pp. 1977-1980
Author(s):  
Jian Xiong Wang ◽  
Pan Li

In recent years in yunnan province grain production increase in volatility,The high and stable yield of grain without good irrigation. Agriculture is water conservation, Industrial and agricultural water use ratio is about 1:4 in China, the main contradiction of supply and demand of water resources in agriculture.Due to other reasons, agricultural water supply reliability will be further reduced.In the case of agricultural water situation has deteriorated, in order to ensure and enlarge the scale of regional food production,urgently needs to research and develop to solve the contradictory between food production and supply of water resources in this area.


Sign in / Sign up

Export Citation Format

Share Document