Mechanical properties and permeability evolution in gas-bearing coal–rock combination body under triaxial conditions

2017 ◽  
Vol 76 (24) ◽  
Author(s):  
Kai Wang ◽  
Feng Du ◽  
Xiang Zhang ◽  
Liang Wang ◽  
Chengpeng Xin
2021 ◽  
Author(s):  
Jamie Farquharson ◽  
Bastien Wild ◽  
Alexandra Kushnir ◽  
Michael Heap ◽  
Patrick Baud ◽  
...  

<p>Acidic crater lakes are common features of subaerial volcanic systems; indeed, research suggests the existence of over 700 volcanic lakes around the world. Their persistence requires a regular input of water (e.g., meteoric water) at a rate that exceeds the migration of fluid from the system—for example, due to evaporation or fluid flow through the porous edifice.  Flank aquifers and fumarole fields may similarly be strongly acidic environments.</p><p>In order to explore the evolution of the physical and mechanical properties of an andesite under these field-relevant chemical conditions, we performed batch reaction experiments over timescales from 1 day to 4 months. The experiments involved immersion of a suite of samples in a solution of sulfuric acid (0.125 M; pH ∼0.6). Periodically, samples were removed and their physical and mechanical properties measured. We observe a progressive loss of sample mass, along with a general increase in porosity. We attribute this to the dissolution of plagioclase,  accompanied by the generation of a microporous diktytaxitic groundmass due to glass dissolution.</p><p>Plagioclase phenocrysts are seen to undergo progressive pseudomorphic replacement by an amorphous phase enriched in silica and depleted in other, relatively more soluble, cations (Na, Ca, and Al). In the first phase of dissolution (i.e. between 1 and 10 days), this process appears to be confined to preexisting fractures within the plagioclase phenocrysts. Ultimately, however, these phenocrysts tend toward entire replacement by amorphous silica. We do not observe evidence of induced dissolution or alteration in the other mineral constituents of the material: pyroxene, cristobalite, and titanomagnetite, specifically.</p><p>Examining the required Klinkenberg corrections during permeability measurements, we quantitatively demonstrate that the relative aperture of flow pathways increases with progressive acid immersion, by as much as a factor of five. We propose that the dissolution process results in the widening of pore throats and the improvement of pore connectivity, with the effect of increasing permeability by over an order of magnitude relative to the initial measurements. Compressive strength of our samples was also decreased, insofar as porosity tends to increase.</p><p>We highlight broader implications of the observed permeability increase and strength reduction for volcanic systems including induced flank failure and related hazards, improved efficiency of volatile migration, and attendant eruption implications.</p>


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Yi-Chao Zhao ◽  
Ming-Shi Gao ◽  
Yong-Liang He ◽  
Dong Xu

A coal-rock (CR) combined body can be used to simulate structures of coal and rock strata, and its impact-induced failure characteristic conforms more close to engineering practice. Exploring the mechanical properties and impact energy in a CR combined body contributes to better predictions of rock bursts in coal mines. In the study, the mechanical properties of CR combined bodies with four different inclinations (0°, 15°, 30°, and 45°) of structural planes were measured, and also their failure mechanism was analysed. Based on the theory of particle mechanics, a calculation model for impact energy in a CR combined body with inclinations was established and then verified by using monitored acoustic emission (AE) data. The test results showed that inclination affected mechanical properties and failure characteristics of the CR combined body, i.e., the larger the inclination, the lower the strength and impact energy in the CR combined body and the lower the level of damage. The proposed calculation model for impact energy revealed the mechanical essence of energy accumulation and release of a CR combined body, providing a reference for investigating rock burst in coal mines.


2019 ◽  
Vol 9 (23) ◽  
pp. 5141
Author(s):  
Zhang ◽  
Wang ◽  
Du ◽  
Lou ◽  
Wang

In actual mining situations, the advancing speed of the working face is usually accelerated, which may affect the failure and seepage characteristics of gas-bearing coal, and may even induce dynamic disasters. In order to discover the effects of such accelerated advancement of the working face, an experimental study on the failure and seepage characteristics of gas-bearing coal under accelerated loading and unloading conditions was carried out in this work. The results showed that the energy release was more violent and impactful under accelerated loading and unloading paths. The time required for the failure of the sample was significantly shortened. After being destroyed, the breakup of the sample was more severe, and the magnitude of the permeability was greater. Accordingly, the acceleration of the loading and unloading had significant control effects on the failure and permeability of coal and it showed a significant danger of inducing coal and gas dynamic disasters. Meanwhile, the degree of influence of the acceleration on the coal decreased with an increase in the gas pressure and increased significantly with an increase in the initial confining pressure. It was found that for a deep high-gas mine, the accelerated advancement of the working face under a high in situ stress condition would greatly increase the risk of coal and gas dynamic disasters. Then, the permeability evolution model of gas-bearing coal in consideration of changes in the loading and unloading rates was theoretically established in this work, and this permeability model was validated by experimental data. The permeability model was found to be relatively reasonable. In summary, the effects of accelerated loading and unloading on the failure and seepage characteristics of gas-bearing coal were obtained through a combination of experimental and theoretical studies, and the intrinsic relationship between the accelerated advancement of the working face and the occurrence of coal and gas dynamic disasters was discovered in this work.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shuang Gong ◽  
Wen Wang ◽  
Furui Xi ◽  
Wenlong Shen

Due to the extensive excavation of the mine pit, a special frozen rock slope is formed, which transforms the permafrost (coal rock) of certain thickness in the frozen state to the melting state. To evaluate the dynamic mechanical properties and deformation characteristics of coal under cyclic freeze-thaw conditions, freeze-thaw experiments with different cycle times were conducted. And the mechanical properties of coal under quasistatic and dynamic conditions were investigated by using GCTS multifunctional rock mechanic experimental apparatus and SHPB dynamic loading apparatus, respectively. The results show that with the increase of freeze-thawing times, mass of both water-saturated and dried coal samples gradually decreased, the postpeak becomes gentler, and the specimens show ductile damage characteristics. The damage of the coal samples changed more after 30 freeze-thaw cycles, when deterioration of the coal samples was highest. The elastic modulus of the coal sample after freeze-thawing decreases continuously with the increase of the number of freeze-thaw cycles, and its trend decreases approximately linearly. Dynamic compressive strength of the coal samples decreases after freeze-thaw cycles, and this trend is consistent with the quasistatic loading conditions.


Sign in / Sign up

Export Citation Format

Share Document