Effect of gamma radiation on growth and lignin content in Brachypodium distachyon

2013 ◽  
Vol 16 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Man Bo Lee ◽  
Dae Yeon Kim ◽  
Woong Bae Jeon ◽  
Min Jeong Hong ◽  
Yong Jin Lee ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Juan Carlos Serrani-Yarce ◽  
Luis Escamilla-Trevino ◽  
Jaime Barros ◽  
Lina Gallego-Giraldo ◽  
Yunqiao Pu ◽  
...  

Abstract Background Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) is a central enzyme of the so-called “esters” pathway to monolignols. As originally envisioned, HCT functions twice in this pathway, to form coumaroyl shikimate and then, in the “reverse” direction, to convert caffeoyl shikimate to caffeoyl CoA. The discovery of a caffeoyl shikimate esterase (CSE) that forms caffeic acid directly from caffeoyl shikimate calls into question the need for the reverse HCT reaction in lignin biosynthesis. Loss of function of HCT gives severe growth phenotypes in several dicot plants, but less so in some monocots, questioning whether this enzyme, and therefore the shikimate shunt, plays the same role in both monocots and dicots. The model grass Brachypodium distachyon has two HCT genes, but lacks a classical CSE gene. This study was therefore conducted to evaluate the utility of HCT as a target for lignin modification in a species with an “incomplete” shikimate shunt. Results The kinetic properties of recombinant B. distachyon HCTs were compared with those from Arabidopsis thaliana, Medicago truncatula, and Panicum virgatum (switchgrass) for both the forward and reverse reactions. Along with two M. truncatula HCTs, B. distachyon HCT2 had the least kinetically unfavorable reverse HCT reaction, and this enzyme is induced when HCT1 is down-regulated. Down regulation of B. distachyon HCT1, or co-down-regulation of HCT1 and HCT2, by RNA interference led to reduced lignin levels, with only modest changes in lignin composition and molecular weight. Conclusions Down-regulation of HCT1, or co-down-regulation of both HCT genes, in B. distachyon results in less extensive changes in lignin content/composition and cell wall structure than observed following HCT down-regulation in dicots, with little negative impact on biomass yield. Nevertheless, HCT down-regulation leads to significant improvements in biomass saccharification efficiency, making this gene a preferred target for biotechnological improvement of grasses for bioprocessing.


2021 ◽  
Author(s):  
Catherine Lapierre ◽  
Richard Sibout ◽  
Françoise Laurans ◽  
Marie-Claude Lesage-Descauses ◽  
Annabelle Déjardin ◽  
...  

ABSTRACTTransgenic poplars (Populus tremula x Populus alba, clone INRA 717-1B4) were produced by introducing the Brachypodium distachyon Bradi2g36910 (BdPMT1) gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase (AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p-coumaric acid (CA). Several BdPMT1- OE/WT and BdPMT1-OE/AtF5H-OE transgenic lines were grown in the greenhouse and BdPMT1 expression in xylem was confirmed by RT-PCR. The analysis of the cell walls (CW) of poplar stems and of corresponding purified dioxan lignins (DL) revealed that the BdPMT1-OE lignins were as p-coumaroylated as the lignins of C3 grass straws. For some transformants, CA levels even reached about 11 mg/g CW and 66 mg/g DL, which by far exceeds those of Brachypodium or wheat samples. This unprecedentedly high p-coumaroylation of poplar lignins affected neither the poplar growth, nor the stem lignin content. By contrast, the transgenic lignins were structurally modified, with an increase of terminal units with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-coumaroylation of poplar samples, up to the levels of C3 grasses, improved the saccharification yield of alkali-pretreated poplar CW. These results establish that the genetically-driven p-coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to the alkaline treatments that can be used during the industrial processing of lignocellulosics.One-sentence summaryThe expression of a grass p-coumaroyl-CoA:monolignol transferase induces a high p-coumaroylation of poplar lignins and a better saccharification of alkali-pretreated poplar wood without growth penalty


2017 ◽  
Vol 14 (2) ◽  
pp. 108-113 ◽  
Author(s):  
Md. Asadul Hoque ◽  
Md. Anwarul Kabir Bhuiya ◽  
Md. Saiduzzaman ◽  
Md. Ashadul Islam ◽  
Mubarak A. Khan

Purpose This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The natural fiber-reinforced composite has been a wide area of research, and it is the preferred choice due to its superior physical and mechanical properties like low density, stiffness and light weight. Among several natural fibers, jute is one that has good potential as reinforcement in polymer composite. Jute fibers biodegradability, low cost and moderate mechanical properties make it as a preferable reinforcement material in the development of polymer matrix composites. Design/methodology/approach In the present work, raw jute fabrics-reinforced polyester composite (as RJPC) and polyethylene glycol (PEG)-modified bleached jute fabrics-reinforced polyester composite (as MBJPC) were fabricated by the heat-press molding technique at 120°C for 5 min at a pressure of 5 tons. Prior to the composite formulation, low lignin content bleached jute fabrics were chemically modified with PEG for the better compatibility of the fabrics with the polyester matrix and enhancing elongation properties. All the composites irradiated with different gamma radiation dose in the range of 2 to 14 kGy. Findings The irradiated composites showed highest improved of mechanical properties at the 10 kGy γ-radiation dose. However, the hard and sunlight-sensitive high lignin content γ-RJPC showed higher mechanical properties except elongation properties compared to that of low lignin content γ-MBJPC. Originality/value After the γ-ray irradiation, both the γ-RJPC and γ-MBJPC developed high degree of cross-linking among the polyester molecules and thereto fabrics with the consequence of significant changed of surface morphology as observed by atomic force microscopy.


Author(s):  
K. Cowden ◽  
B. Giammara ◽  
T. Devine ◽  
J. Hanker

Plaster of Paris (calcium sulfate hemihydrate, CaSO4. ½ H2O) has been used as a biomedical implant material since 1892. One of the primary limiting factors of these implants is their mechanical properties. These materials have low compressive and tensile strengths when compared to normal bone. These are important limiting factors where large biomechanical forces exist. Previous work has suggested that sterilization techniques could affect the implant’s strength. A study of plaster of Paris implant mechanical and physical properties to find optimum sterilization techniques therefore, could lead to a significant increase in their application and promise for future use as hard tissue prosthetic materials.USG Medical Grade Calcium Sulfate Hemihydrate Types A, A-1 and B, were sterilized by dry heat and by gamma radiation. Types A and B were additionally sterilized with and without the setting agent potassium sulfate (K2SO4). The plaster mixtures were then moistened with a minimum amount of water and formed into disks (.339 in. diameter x .053 in. deep) in polyethylene molds with a microspatula. After drying, the disks were fractured with a Stokes Hardness Tester. The compressive strengths of the disks were obtained directly from the hardness tester. Values for the maximum tensile strengths σo were then calculated: where (P = applied compression, D = disk diameter, and t = disk thickness). Plaster disks (types A and B) that contained no setting agent showed a significant loss in strength with either dry heat or gamma radiation sterilization. Those that contained potassium sulfate (K2SO4) did not show a significant loss in strength with either sterilization technique. In all comparisons (with and without K2SO4 and with either dry heat or gamma radiation sterilization) the type B plaster had higher compressive and tensile strengths than that of the type A plaster. The type A-1 plaster however, which is specially modified for accelerated setting, was comparable to that of type B with K2SO4 in both compressive and tensile strength (Table 1).


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


1999 ◽  
Vol 96 (1) ◽  
pp. 143-146 ◽  
Author(s):  
J.-P. Pouget ◽  
J.-L. Ravanat ◽  
T. Douki ◽  
M.-J. Richard ◽  
J. Cadet

2020 ◽  
pp. 8-12
Author(s):  
Alexandr V. Oborin ◽  
Anna Y. Villevalde ◽  
Sergey G. Trofimchuk

The results of development of the national primary standard of air kerma, air kerma rate, exposure, exposure rate and energy flux for X-rays and gamma radiation GET 8-2011 in 2019 are presented according to the recommendations of the ICRU Report No. 90 “Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications”. The following changes are made to the equations for the units determination with the standard: in the field of X-rays, new correction coefficients of the free-air ionization chambers are introduced and the relative standard uncertainty of the average energy to create an ion pair in air is changed; in the field of gamma radiation, the product of the average energy to create an ion pair in air and the electron stopping-power graphite to air ratio for the cavity ionization chambers is changed. More accurate values of the units reproduced by GET 8-2019 are obtained and new metrological characteristics of the standard are stated.


Sign in / Sign up

Export Citation Format

Share Document