scholarly journals A System for Continuous Pre- to Post-reperfusion Intra-carotid Cold Infusion for Selective Brain Hypothermia in Rodent StrokeModels

Author(s):  
Yi Wang ◽  
Jae H. Choi ◽  
Mohammed A. Almekhlafi ◽  
Ulf Ziemann ◽  
Sven Poli

Abstract Intra-carotid cold infusion (ICCI) appears as a promising method for hypothermia-mediated brain protection from ischemic stroke. Recent clinical pilot studies indicate easy implementation of ICCI into endovascular acute ischemic stroke treatment. Current rodent ICCI-in-stroke models limit ICCI to the post-reperfusion phase. To establish a method for continuous ICCI over the duration of intra-ischemia to post-reperfusion in rodent stroke models, a novel system was developed. Eighteen male Sprague-Dawley rats were included. Intraluminal filament method was used for transient middle cerebral artery occlusion (MCAO). Normal saline (~ 0 °C) was delivered (≤ 2.0 mL/min) into the internal carotid artery via a customized infusion system without interruption during MCAO (intra-ischemia) to after filament withdrawal (post-reperfusion). Bilateral cortical and striatal temperatures were monitored. Hypothermia goals were a temperature reduction in the ischemic hemisphere by 2 °C prior to reperfusion and thereafter maintenance of regional brain hypothermia at ~ 32 °C limiting the administered ICCI volume to ½ of each rat’s total blood volume. During ischemia, maximum brain cooling rate was achieved with ICCI at 0.5 mL/min. It took 2 min to reduce ischemic striatal temperature by 2.3 ± 0.3 °C. After reperfusion, brain cooling was continued at 2 mL/min ICCI first (over 42 s) and maintained at 32.1 ± 0.3 °C at 0.7 mL/min ICCI over a duration of 15 ± 0.8 min. ICCI (total 12.6 ± 0.6 mL) was uninterrupted over the duration of the studied phases. First system that allows continuous ICCI during the phases of intra-ischemia to post-reperfusion in small animals for selective brain cooling and for investigations of other neuroprotective infusions.

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Terrance Chiang ◽  
Sean Harvey ◽  
Arjun V Pendharkar ◽  
Michelle Y Cheng ◽  
Gary K Steinberg

Introduction: Manual scoring of behavior tests is commonly used for assessing motor deficits after stroke, however, it is labor intensive and subject to bias. These limitations lead to inconsistent assessment between research groups and non-reproducible data. In this study, we investigated the feasibility of an automated motor deficit assessment system, Erasmus ladder, in two ischemic stroke models. Methods: Distal middle cerebral artery occlusion (dMCAO n=10) or transient middle cerebral artery occlusion (tMCAO 30 minutes, n=15) were performed on male C57BL6J mice (11-13 weeks) to generate cortical ischemic stroke, with. Naïve mice (n=10) were used as controls. Immunohistochemistry was performed on brains collected at post-stroke day (PD) 30 to assess for infarct size (MAP2) and inflammation (CD68). Mice without infarct in both cortex and striatum were excluded from the study. Behavior was assessed using Erasmus ladder at pre-stroke baseline (4 unperturbed and 4 perturbed sessions) and on PD 7, 14, 21, and 28 (all perturbed sessions). Results: Erasmus ladder detected significant motor deficits in the tMCAO model, specifically in the pre- and post- perturbed times as well as several key step types (HH long). Analyses in the tMCAO model reveal changes in various step patterns and their capability to react to the perturbation (obstacle). These significant motor deficits after tMCAO were detectable until PD28. We also observed a sustained decline in the use of affected limb compared to unaffected limb until PD28. While this trend is also present in dMCAO model, motor deficits were detected in the dMCAO only at early timepoints (PD7) and the difference subsided by PD28. Conclusion: We have assessed the data collected by Erasmus ladder on mice that underwent two commonly used stroke models (tMCAO and dMCAO). Our data showed that Erasmus ladder can detect long term motor deficit including reduced use of affected limb, step pattern, and motor reaction to obstacle. This automated instrument is effective in detecting motor deficits in the tMCAO model and thus, can be used to evaluate treatments for enhancing recovery after stroke.


2020 ◽  
Vol 34 (7) ◽  
pp. 640-651 ◽  
Author(s):  
Keying Zhang ◽  
Ling Guo ◽  
Junping Zhang ◽  
Gang Rui ◽  
Guangzhou An ◽  
...  

Background. Ischemic stroke carries a high mortality rate and is a leading cause of severe neurological disability. However, the efficacy of current therapeutic options remains limited. Objective. We aimed to investigate the treatment efficacy of transcranial direct current stimulation (tDCS) in motor function rehabilitation after ischemic stroke and explore the underlying mechanisms. Methods. Male Sprague-Dawley rats with epicranial electrodes were used to establish pathogenetic model through temporary right middle cerebral artery occlusion (MCAO). Subsequently, animals were randomly divided into 4 groups: MCAO + tDCS/sham tDCS, Control + tDCS/sham tDCS. Animals in the groups with tDCS underwent 10 days of cathodal tDCS totally (500 µA, 15 minutes, once a day). During and after tDCS treatment, the motor functions of the animals, ischemic damage area, proliferation and differentiation of neural stem cells (NSCs), and distribution, and protein expression of Notch1 signaling molecules were detected. Results. The rehabilitation of MCAO-induced motor function deficits was dramatically accelerated by tDCS treatment. NSC proliferation in the subventricular zone (SVZ) was significantly increased after MCAO surgery, and tDCS treatment promoted this process. Additionally, NSCs probably migrated from the SVZ to the ischemic striatum and then differentiated into neurons and oligodendrocytes after MCAO surgery, both of which processes were accelerated by tDCS treatment. Finally, tDCS treatment inhibited the activation of Notch1 signaling in NSCs in the ischemic striatum, which may be involved in NSC differentiation in the MCAO model. Conclusion. Our results suggest that tDCS may exert therapeutic efficacy after ischemic stroke in a regenerative medical perspective.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Cheng Luo ◽  
Qi Chen ◽  
Bowen Liu ◽  
Shengpeng Wang ◽  
Hualin Yu ◽  
...  

The study indicates inflammation and autophagy are closely related to neural apoptosis in the pathology of ischemic stroke. In the study, we investigate the effects and mechanisms of the extracts of Angelica sinensis and Cinnamomum cassia (AC) from oriental medicinal foods on inflammatory and autophagic pathways in rat permanent middle cerebral artery occlusion model. Three doses of AC extract were, respectively, administered for 7 days. It suggests that AC extract treatment ameliorated scores of motor and sensory functions and ratio of glucose utilization in thalamic lesions in a dose-dependent manner. Expression of Iba1 was decreased and CD206 was increased by immunofluorescence staining, western blotting results showed expressions of TLR4, phosphorylated-IKKβ and IκBα, nuclear P65, NLRP3, ASC, and Caspase-1 were downregulated, and Beclin 1 and LC3 II were upregulated. Low concentrations of TNF-α, IL-1β, and IL-6 were presented by ELISA assay. Additionally, caspase 8 and cleaved caspase-3 expressions and the number of TUNEL positive cells in ipsilateral hemisphere were decreased, while the ratio of Bcl-2/Bax was increased. Simultaneously, in LPS-induced BV2 cells, it showed nuclear P65 translocation and secretion of proinflammatory cytokines were suppressed by AC extract-contained cerebrospinal fluid, and its intervened effects were similar to TLR4 siRNA treatment. Our study demonstrates that AC extract treatment attenuates inflammatory response and elevates autophagy against neural apoptosis, which contributes to the improvement of neurological function poststroke. Therefore, AC extract may be a novel neuroprotective agent by regulation of inflammatory and autophagic pathways for ischemic stroke treatment.


2020 ◽  
Vol 25 (45) ◽  
pp. 4763-4770
Author(s):  
Angel Cespedes ◽  
Mario Villa ◽  
Irene Benito-Cuesta ◽  
Maria J. Perez-Alvarez ◽  
Lara Ordoñez ◽  
...  

: Stroke is an important cause of death and disability, and it is the second leading cause of death worldwide. In humans, middle cerebral artery occlusion (MCAO) is the most common cause of ischemic stroke. The damage occurs due to the lack of nutrients and oxygen contributed by the blood flow. : The present review aims to analyze to what extent the lack of each of the elements of the system leads to damage and which mechanisms are unaffected by this deficiency. We believe that the specific analysis of the effect of lack of each component could lead to the emergence of new therapeutic targets for this important brain pathology.


2018 ◽  
Vol 17 (4) ◽  
pp. 299-308 ◽  
Author(s):  
Bogdan Catalin ◽  
Otilia-Constantina Rogoveanu ◽  
Ionica Pirici ◽  
Tudor Adrian Balseanu ◽  
Adina Stan ◽  
...  

Background: Edema represents one of the earliest negative markers of survival and consecutive neurological deficit following stroke. The mixture of cellular and vasogenic edema makes treating this condition complicated, and to date, there is no pathogenically oriented drug treatment for edema, which leaves parenteral administration of a hypertonic solution as the only non-surgical alternative. Objective: New insights into water metabolism in the brain have opened the way for molecular targeted treatment, with aquaporin 4 channels (AQP4) taking center stage. We aimed here to assess the effect of inhibiting AQP4 together with the administration of a neurotropic factor (Cerebrolysin) in ischemic stroke. Methods: Using a permanent medial cerebral artery occlusion rat model, we administrated a single dose of the AQP4 inhibitor TGN-020 (100 mg/kg) at 15 minutes after ischemia followed by daily Cerebrolysin dosing (5ml/kg) for seven days. Rotarod motor testing and neuropathology examinations were next performed. Results: We showed first that the combination treatment animals have a better motor function preservation at seven days after permanent ischemia. We have also identified distinct cellular contributions that represent the bases of behavior testing, such as less astrocyte scarring and a larger neuronalsurvival phenotype rate in animals treated with both compounds than in animals treated with Cerebrolysin alone or untreated animals. Conclusion: Our data show that water diffusion inhibition and Cerebrolysin administration after focal ischemic stroke reduces infarct size, leading to a higher neuronal survival in the peri-core glial scar region.


Author(s):  
Yong-Ming Zhu ◽  
Liang Lin ◽  
Chao Wei ◽  
Yi Guo ◽  
Yuan Qin ◽  
...  

AbstractNecroptosis initiation relies on the receptor-interacting protein 1 kinase (RIP1K). We recently reported that genetic and pharmacological inhibition of RIP1K produces protection against ischemic stroke-induced astrocytic injury. However, the role of RIP1K in ischemic stroke-induced formation of astrogliosis and glial scar remains unknown. Here, in a transient middle cerebral artery occlusion (tMCAO) rat model and an oxygen and glucose deprivation and reoxygenation (OGD/Re)-induced astrocytic injury model, we show that RIP1K was significantly elevated in the reactive astrocytes. Knockdown of RIP1K or delayed administration of RIP1K inhibitor Nec-1 down-regulated the glial scar markers, improved ischemic stroke-induced necrotic morphology and neurologic deficits, and reduced the volume of brain atrophy. Moreover, knockdown of RIP1K attenuated astrocytic cell death and proliferation and promoted neuronal axonal generation in a neuron and astrocyte co-culture system. Both vascular endothelial growth factor D (VEGF-D) and its receptor VEGFR-3 were elevated in the reactive astrocytes; simultaneously, VEGF-D was increased in the medium of astrocytes exposed to OGD/Re. Knockdown of RIP1K down-regulated VEGF-D gene and protein levels in the reactive astrocytes. Treatment with 400 ng/ml recombinant VEGF-D induced the formation of glial scar; conversely, the inhibitor of VEGFR-3 suppressed OGD/Re-induced glial scar formation. RIP3K and MLKL may be involved in glial scar formation. Taken together, these results suggest that RIP1K participates in the formation of astrogliosis and glial scar via impairment of normal astrocyte responses and enhancing the astrocytic VEGF-D/VEGFR-3 signaling pathways. Inhibition of RIP1K promotes the brain functional recovery partially via suppressing the formation of astrogliosis and glial scar. Graphical Abstract


2021 ◽  
pp. 0271678X2199298
Author(s):  
Chao Li ◽  
Chunyang Wang ◽  
Yi Zhang ◽  
Owais K Alsrouji ◽  
Alex B Chebl ◽  
...  

Treatment of patients with cerebral large vessel occlusion with thrombectomy and tissue plasminogen activator (tPA) leads to incomplete reperfusion. Using rat models of embolic and transient middle cerebral artery occlusion (eMCAO and tMCAO), we investigated the effect on stroke outcomes of small extracellular vesicles (sEVs) derived from rat cerebral endothelial cells (CEC-sEVs) in combination with tPA (CEC-sEVs/tPA) as a treatment of eMCAO and tMCAO in rat. The effect of sEVs derived from clots acquired from patients who had undergone mechanical thrombectomy on healthy human CEC permeability was also evaluated. CEC-sEVs/tPA administered 4 h after eMCAO reduced infarct volume by ∼36%, increased recanalization of the occluded MCA, enhanced cerebral blood flow (CBF), and reduced blood-brain barrier (BBB) leakage. Treatment with CEC-sEVs given upon reperfusion after 2 h tMCAO significantly reduced infarct volume by ∼43%, and neurological outcomes were improved in both CEC-sEVs treated models. CEC-sEVs/tPA reduced a network of microRNAs (miRs) and proteins that mediate thrombosis, coagulation, and inflammation. Patient-clot derived sEVs increased CEC permeability, which was reduced by CEC-sEVs. CEC-sEV mediated suppression of a network of pro-thrombotic, -coagulant, and -inflammatory miRs and proteins likely contribute to therapeutic effects. Thus, CEC-sEVs have a therapeutic effect on acute ischemic stroke by reducing neurovascular damage.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Jing Yu ◽  
Wen-na Wang ◽  
Nathanael Matei ◽  
Xue Li ◽  
Jin-wei Pang ◽  
...  

Oxidative stress and neuroinflammation play essential roles in ischemic stroke-induced brain injury. Previous studies have reported that Ezetimibe (Eze) exerts antioxidative stress and anti-inflammatory properties in hepatocytes. In the present study, we investigated the effects of Eze on oxidative stress and neuroinflammation in a rat middle cerebral artery occlusion (MCAO) model. One hundred and ninety-eight male Sprague-Dawley rats were used. Animals assigned to MCAO were given either Eze or its control. To explore the downstream signaling of Eze, the following interventions were given: AMPK inhibitor dorsomorphin and nuclear factor erythroid 2-related factor 2 (Nrf2) siRNA. Intranasal administration of Eze, 1 h post-MCAO, further increased the endogenous p-AMPK expression, reducing brain infarction, neurologic deficits, neutrophil infiltration, microglia/macrophage activation, number of dihydroethidium- (DHE-) positive cells, and malonaldehyde (MDA) levels. Specifically, treatment with Eze increased the expression of p-AMPK, Nrf2, and HO-1; Romo-1, thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), Cleaved Caspase-1, and IL-1β were reduced. Dorsomorphin and Nrf2 siRNA reversed the protective effects of Eze. In summary, Eze decreases oxidative stress and subsequent neuroinflammation via activation of the AMPK/Nrf2/TXNIP pathway after MCAO in rats. Therefore, Eze may be a potential therapeutic approach for ischemic stroke patients.


Sign in / Sign up

Export Citation Format

Share Document