Response to Letter to Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy

Author(s):  
Aishika Datta ◽  
Deepaneeta Sarmah ◽  
Pallab Bhattacharya
2019 ◽  
Vol 33 (10) ◽  
pp. 10680-10691 ◽  
Author(s):  
Myles R. McCrary ◽  
Michael Q. Jiang ◽  
Michelle M. Giddens ◽  
James Y. Zhang ◽  
Sharon Owino ◽  
...  

2020 ◽  
Vol 11 (6) ◽  
pp. 1185-1202 ◽  
Author(s):  
Aishika Datta ◽  
Deepaneeta Sarmah ◽  
Leela Mounica ◽  
Harpreet Kaur ◽  
Radhika Kesharwani ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 169
Author(s):  
Marianna Carinci ◽  
Bianca Vezzani ◽  
Simone Patergnani ◽  
Peter Ludewig ◽  
Katrin Lessmann ◽  
...  

Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. An insufficient supply of oxygen and glucose in brain cells, primarily neurons, triggers a cascade of events in which mitochondria are the leading characters. Mitochondrial calcium overload, reactive oxygen species (ROS) overproduction, mitochondrial permeability transition pore (mPTP) opening, and damage-associated molecular pattern (DAMP) release place mitochondria in the center of an intricate series of chance interactions. Depending on the degree to which mitochondria are affected, they promote different pathways, ranging from inflammatory response pathways to cell death pathways. In this review, we will explore the principal mitochondrial molecular mechanisms compromised during ischemic and reperfusion injury, and we will delineate potential neuroprotective strategies targeting mitochondrial dysfunction and mitochondrial homeostasis.


2012 ◽  
Vol 122 (2) ◽  
pp. 321-332 ◽  
Author(s):  
Alexander Widiapradja ◽  
Viktor Vegh ◽  
Ker Zhing Lok ◽  
Silvia Manzanero ◽  
John Thundyil ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 137-152
Author(s):  
Marko Manevski ◽  
Dinesh Devadoss ◽  
Ruben Castro ◽  
Lauren Delatorre ◽  
Adriana Yndart ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Pankaj Ahluwalia ◽  
Meenakshi Ahluwalia ◽  
Ashis K. Mondal ◽  
Nikhil Sahajpal ◽  
Vamsi Kota ◽  
...  

Lung cancer is one of the leading causes of death worldwide. Cell death pathways such as autophagy, apoptosis, and necrosis can provide useful clinical and immunological insights that can assist in the design of personalized therapeutics. In this study, variations in the expression of genes involved in cell death pathways and resulting infiltration of immune cells were explored in lung adenocarcinoma (The Cancer Genome Atlas: TCGA, lung adenocarcinoma (LUAD), 510 patients). Firstly, genes involved in autophagy (n = 34 genes), apoptosis (n = 66 genes), and necrosis (n = 32 genes) were analyzed to assess the prognostic significance in lung cancer. The significant genes were used to develop the cell death index (CDI) of 21 genes which clustered patients based on high risk (high CDI) and low risk (low CDI). The survival analysis using the Kaplan–Meier curve differentiated patients based on overall survival (40.4 months vs. 76.2 months), progression-free survival (26.2 months vs. 48.6 months), and disease-free survival (62.2 months vs. 158.2 months) (Log-rank test, p < 0.01). Cox proportional hazard model significantly associated patients in high CDI group with a higher risk of mortality (Hazard Ratio: H.R 1.75, 95% CI: 1.28–2.45, p < 0.001). Differential gene expression analysis using principal component analysis (PCA) identified genes with the highest fold change forming distinct clusters. To analyze the immune parameters in two risk groups, cytokines expression (n = 265 genes) analysis revealed the highest association of IL-15RA and IL 15 (> 1.5-fold, p < 0.01) with the high-risk group. The microenvironment cell-population (MCP)-counter algorithm identified the higher infiltration of CD8+ T cells, macrophages, and lower infiltration of neutrophils with the high-risk group. Interestingly, this group also showed a higher expression of immune checkpoint molecules CD-274 (PD-L1), CTLA-4, and T cell exhaustion genes (HAVCR2, TIGIT, LAG3, PDCD1, CXCL13, and LYN) (p < 0.01). Furthermore, functional enrichment analysis identified significant perturbations in immune pathways in the higher risk group. This study highlights the presence of an immunocompromised microenvironment indicated by the higher infiltration of cytotoxic T cells along with the presence of checkpoint molecules and T cell exhaustion genes. These patients at higher risk might be more suitable to benefit from PD-L1 blockade or other checkpoint blockade immunotherapies.


2021 ◽  
Vol 22 (3) ◽  
pp. 1175
Author(s):  
Ryuta Inukai ◽  
Kanako Mori ◽  
Keiko Kuwata ◽  
Chihiro Suzuki ◽  
Masatoshi Maki ◽  
...  

Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.


Sign in / Sign up

Export Citation Format

Share Document