Real-time intrusion detection based on residual learning through ResNet algorithm

Author(s):  
Asma Shaikh ◽  
Preeti Gupta
Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4736
Author(s):  
Sk. Tanzir Mehedi ◽  
Adnan Anwar ◽  
Ziaur Rahman ◽  
Kawsar Ahmed

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


Author(s):  
Ashish Singh ◽  
Kakali Chatterjee ◽  
Suresh Chandra Satapathy

AbstractThe Mobile Edge Computing (MEC) model attracts more users to its services due to its characteristics and rapid delivery approach. This network architecture capability enables users to access the information from the edge of the network. But, the security of this edge network architecture is a big challenge. All the MEC services are available in a shared manner and accessed by users via the Internet. Attacks like the user to root, remote login, Denial of Service (DoS), snooping, port scanning, etc., can be possible in this computing environment due to Internet-based remote service. Intrusion detection is an approach to protect the network by detecting attacks. Existing detection models can detect only the known attacks and the efficiency for monitoring the real-time network traffic is low. The existing intrusion detection solutions cannot identify new unknown attacks. Hence, there is a need of an Edge-based Hybrid Intrusion Detection Framework (EHIDF) that not only detects known attacks but also capable of detecting unknown attacks in real time with low False Alarm Rate (FAR). This paper aims to propose an EHIDF which is mainly considered the Machine Learning (ML) approach for detecting intrusive traffics in the MEC environment. The proposed framework consists of three intrusion detection modules with three different classifiers. The Signature Detection Module (SDM) uses a C4.5 classifier, Anomaly Detection Module (ADM) uses Naive-based classifier, and Hybrid Detection Module (HDM) uses the Meta-AdaboostM1 algorithm. The developed EHIDF can solve the present detection problems by detecting new unknown attacks with low FAR. The implementation results illustrate that EHIDF accuracy is 90.25% and FAR is 1.1%. These results are compared with previous works and found improved performance. The accuracy is improved up to 10.78% and FAR is reduced up to 93%. A game-theoretical approach is also discussed to analyze the security strength of the proposed framework.


Sign in / Sign up

Export Citation Format

Share Document