scholarly journals Assessment of oil-producing wells by means of stimulation approach through matrix acidizing: a case study in the Azraq region

Author(s):  
Mehaysen Al-Mahasneh ◽  
Said Al Rabadi ◽  
Hussam Khaswaneh

AbstractThe acidizing approach belongs to the well workover operations, where acid mixtures are initially implemented to treat damage near the wellbore area after drilling operations have been completed. Acidizing treatment is characterized by removal of fine particles and debris from the porous media of the damaged zone, hence leading to improve oil production from wells. This study evaluates the assessment of the acidizing treatment in vertical oil-producing wells. Gradually, the damage formation was reduced and then eliminated, and to a great extent, was compensated with the better performance of oil production from reservoirs. Target candidate wells were enriched by environmentally friendly additives and special chemicals, in predefined amounts, to achieve enhanced oil production rates from wells. A semi-analytical model was formulated for extrapolating the skin magnitude, depending on the damage formation’s permeability parameter as well as on the physical characteristics and reservoir depth. The figures of skin magnitude for all target wells were decreased, and oil production rates were enhanced after performing the matrix acidizing process. These findings are valid for diverse geological settings of different formations, as all treated intervals within the investigated wells have shown an objective response to the matrix acidizing approach. Eventually, productivity rates are imperative to increase potential economic outcomes.

2021 ◽  
Vol 11 (6) ◽  
pp. 2743-2761
Author(s):  
Caetano P. S. Andrade ◽  
J. Luis Saavedra ◽  
Andrzej Tunkiel ◽  
Dan Sui

AbstractDirectional drilling is a common and essential procedure of major extended reach drilling operations. With the development of directional drilling technologies, the percentage of recoverable oil production has increased. However, its challenges, like real-time bit steering, directional drilling tools selection and control, are main barriers leading to low drilling efficiency and high nonproductive time. The fact inspires this study. Our work aims to contribute to the better understanding of directional drilling, more specifically regarding rotary steerable system (RSS) technology. For instance, finding the solutions of the technological challenges involved in RSSs, such as bit steering control, bit position calculation and bit speed estimation, is the main considerations of our study. Classical definitions from fundamental physics including Newton’s third law, beam bending analysis, bit force analysis, rate of penetration (ROP) modeling are employed to estimate bit position and then conduct RSS control to steer the bit accordingly. The results are illustrated in case study with the consideration of the 2D and 3D wellbore scenarios.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
A. de Giorgi ◽  
S. Vogl

Abstract The Kaluza-Klein (KK) decomposition of higher-dimensional gravity gives rise to a tower of KK-gravitons in the effective four-dimensional (4D) theory. Such massive spin-2 fields are known to be connected with unitarity issues and easily lead to a breakdown of the effective theory well below the naive scale of the interaction. However, the breakdown of the effective 4D theory is expected to be controlled by the parameters of the 5D theory. Working in a simplified Randall-Sundrum model we study the matrix elements for matter annihilations into massive gravitons. We find that truncating the KK-tower leads to an early breakdown of perturbative unitarity. However, by considering the full tower we obtain a set of sum rules for the couplings between the different KK-fields that restore unitarity up to the scale of the 5D theory. We prove analytically that these are fulfilled in the model under consideration and present numerical tests of their convergence. This work complements earlier studies that focused on graviton self-interactions and yields additional sum rules that are required if matter fields are incorporated into warped extra-dimensions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1377
Author(s):  
Musaab I. Magzoub ◽  
Raj Kiran ◽  
Saeed Salehi ◽  
Ibnelwaleed A. Hussein ◽  
Mustafa S. Nasser

The traditional way to mitigate loss circulation in drilling operations is to use preventative and curative materials. However, it is difficult to quantify the amount of materials from every possible combination to produce customized rheological properties. In this study, machine learning (ML) is used to develop a framework to identify material composition for loss circulation applications based on the desired rheological characteristics. The relation between the rheological properties and the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed experimentally. Four different ML algorithms were implemented to model the rheological data for various mud components at different concentrations and testing conditions. These four algorithms include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity, respectively), which can be further used for hydraulic calculations. Overall, the experimental study presented in this paper, together with the proposed ML-based framework, adds valuable information to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has shown that with the appropriate combination of materials, reasonable rheological properties could be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).


2001 ◽  
Author(s):  
Zahidah Md. Zain ◽  
Nor Idah Kechut ◽  
Ganesan Nadeson ◽  
Noraini Ahmad ◽  
D.M. Anwar Raja

2021 ◽  
Author(s):  
Adekunle Tirimisiyu Adeniyi ◽  
Miracle Imwonsa Osatemple ◽  
Abdulwahab Giwa

Abstract There are a good numbers of brown hydrocarbon reservoirs, with a substantial amount of bypassed oil. These reservoirs are said to be brown, because a huge chunk of its recoverable oil have been produced. Since a significant number of prominent oil fields are matured and the number of new discoveries is declining, it is imperative to assess performances of waterflooding in such reservoirs; taking an undersaturated reservoir as a case study. It should be recalled that Waterflooding is widely accepted and used as a means of secondary oil recovery method, sometimes after depletion of primary energy sources. The effects of permeability distribution on flood performances is of concerns in this study. The presence of high permeability streaks could lead to an early water breakthrough at the producers, thus reducing the sweep efficiency in the field. A solution approach adopted in this study was reserve water injection. A reverse approach because, a producing well is converted to water injector while water injector well is converted to oil producing well. This optimization method was applied to a waterflood process carried out on a reservoir field developed by a two - spot recovery design in the Niger Delta area of Nigeria that is being used as a case study. Simulation runs were carried out with a commercial reservoir oil simulator. The result showed an increase in oil production with a significant reduction in water-cut. The Net Present Value, NPV, of the project was re-evaluated with present oil production. The results of the waterflood optimization revealed that an increase in the net present value of up to 20% and an increase in cumulative production of up to 27% from the base case was achieved. The cost of produced water treatment for re-injection and rated higher water pump had little impact on the overall project economy. Therefore, it can conclude that changes in well status in wells status in an heterogenous hydrocarbon reservoir will increase oil production.


Palaios ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 115-121
Author(s):  
EDUARDO MAYORAL ◽  
JORGE F. GENISE ◽  
FRANCISCO J. RODRÍGUEZ-TOVAR ◽  
ANA SANTOS

ABSTRACT Plio?-Pleistocene outcrops located at the southwestern edge of the Guadalquivir Basin in the area of Lepe (Huelva, Spain) provide an interesting example for studying the contemporaneity of traces with the rocks that contain them. Two different types of cells compatible with the ichnogenera Celliforma (Type 1) and Palmiraichnus (Type 2) were found in these outcrops. Their walls were constructed with the same material as the matrix and our first research in the area showed no extant bees producing them suggesting that they were coeval with the trace-bearing rocks. The case of the “Palmiraichnus-like” Type 2 cells was misleading because of its similarity with Palmiraichnus described from the region in the Canary Islands and Balearic Archipelago (Spain). Two determining features were vital in clarifying this first appearance. In the Palmiraichnus-like cells we found remains of a larval cocoon in one cell that could be dated by C14, giving a modern age. In the Celliforma-like cells more field research in the area allow us to observe extant bees nesting in these rocks in autumn. Ichnological literature show a few cases of asynchronies involving extant traces found mostly in Paleozoic and Mesozoic rocks. In contrast, the case presented herein indicates the time gap between the bearing rocks and the Lepe traces was shorter (ca. 12 ky–2.6 My), enhancing the similarity of traces and rocks and thus their potential coevalness. This case may serve as a warning about other potential examples in the fossil record in which relatively short asynchronies between traces and paleosols exist.


2018 ◽  
Author(s):  
Longfellow Oghale Atakele ◽  
Osahon Noruwa Airhis ◽  
Ntietemi Ekpo Etim ◽  
Fisayo Jordan Ipoola ◽  
John Osadebe Anim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document