scholarly journals Research on the mechanism of the influence of flooding on the killing of empty wells

2021 ◽  
Vol 11 (9) ◽  
pp. 3571-3598
Author(s):  
Jie Zhang ◽  
Zaipeng Zhao ◽  
Xin Li ◽  
Yundong Zheng ◽  
Cuinan Li ◽  
...  

AbstractIn empty well killing, in order to save the time and cost of killing the well, the dynamic replacement method is often used to kill the well. The main problem of the dynamic replacement method for killing wells is how to avoid terrible working conditions caused by flooding, such as gas carrying fluid, killing fluid being brought to the wellhead. Based on the principle of flooding formation and the basic tenets of flooding correlation experiment and dynamic replacement method, this paper incorporates the kill fluid viscosity, surface tension, droplet diameter, inclination angle, drill pipe joint outer diameter, and drill pipe eccentricity into the calculation range and establishes a new mathematical model suitable for dynamic replacement kill. Based on the calculation results, the influencing factors of flooding are analyzed, and the following conclusions are drawn: the increase of dynamic viscosity, gas density in the well, casing pressure, well angle, the outside diameter of drill pipe, the outer diameter of drill pipe joint, and eccentricity of drill pipe can promote the occurrence of flooding; The increase of surface tension, well-killing fluid density, and casing inner diameter have an obstacle to flooding.

1990 ◽  
Vol 69 (1) ◽  
pp. 74-85 ◽  
Author(s):  
D. P. Gaver ◽  
R. W. Samsel ◽  
J. Solway

We studied airway opening in a benchtop model intended to mimic bronchial walls held in apposition by airway lining fluid. We measured the relationship between the airway opening velocity (U) and the applied airway opening pressure in thin-walled polyethylene tubes of different radii (R) using lining fluids of different surface tensions (gamma) and viscosities (mu). Axial wall tension (T) was applied to modify the apparent wall compliance characteristics, and the lining film thickness (H) was varied. Increasing mu or gamma or decreasing R or T led to an increase in the airway opening pressures. The effect of H depended on T: when T was small, opening pressures increased slightly as H was decreased; when T was large, opening pressure was independent of H. Using dimensional analysis, we found that the relative importance of viscous and surface tension forces depends on the capillary number (Ca = microU/gamma). When Ca is small, the opening pressure is approximately 8 gamma/R and acts as an apparent “yield pressure” that must be exceeded before airway opening can begin. When Ca is large (Ca greater than 0.5), viscous forces add appreciably to the overall opening pressures. Based on these results, predictions of airway opening times suggest that airway closure can persist through a considerable portion of inspiration when lining fluid viscosity or surface tension are elevated.


2017 ◽  
Vol 16 (10) ◽  
pp. 1515-1522
Author(s):  
Jerzy Sękowski ◽  
Sławomir Kwiecień ◽  
Piotr Kanty

2015 ◽  
Vol 35 (1) ◽  
pp. 109-116 ◽  
Author(s):  
RONE B. DE OLIVEIRA ◽  
ULISSES R. ANTUNIASSI ◽  
MARCO A. GANDOLFO

This study defined the main adjuvant characteristics that may influence or help to understand drift formation process in the agricultural spraying. It was evaluated 33 aqueous solutions from combinations of various adjuvants and concentrations. Then, drifting was quantified by means of wind tunnel; and variables such as percentage of droplets smaller than 50 μm (V50), 100 μm (V100), diameter of mean volume (DMV), droplet diameter composing 10% of the sprayed volume (DV0.1), viscosity, density and surface tension. Assays were performed in triplicate, using Teejet XR8003 flat fan nozzles at 200 kPa (medium size droplets). Spray solutions were stained with Brilliant Blue Dye at 0.6% (m/ v). DMV, V100, viscosity cause most influence on drift hazardous. Adjuvant characteristics and respective methods of evaluation have applicability in drift risk by agricultural spray adjuvants.


2021 ◽  
Vol 261 ◽  
pp. 02021
Author(s):  
Xiaoyong Yang ◽  
Shichun Chen ◽  
Qiang Feng ◽  
Wenhua Zhang ◽  
Yue Wang

With the increasing intensity of oil and gas field exploration and development, oil and gas wells are also drilling into deeper and more complex formations. Conventional steel drilling tools can no longer meet the requirements of ultra-deep, high-temperature and high-pressure wells. The paper first analyzes the advantages of titanium alloy drill pipe based on basic performance of titanium alloy drill pipe. The experimental results show that the basic properties of titanium alloy drill pipes meet the operating standards of the petroleum industry. Then the buckling performance of titanium alloy drill pipe and steel drill pipe is compared, the calculation results show that the buckling performance of titanium alloy drill tools is slightly lower than that of steel drill tools. Secondly, the maximum allowable buildup rate of titanium alloy drill pipe and steel drill tool is studied. The research shows that under the same condition of the drill pipe outer diameter, titanium alloy drill pipe can be used for a smaller curvature radius and greater buildup rate. This advantage of titanium alloy drill pipe makes it more suitable for short radius and ultra-short radius wells. Finally, taking a shale gas horizontal well as an example, with the goal of reducing drill string friction and ensuring drill string stability, a comparative study on the application of titanium alloy drill pipe and steel drill pipe is carried out. The results show that titanium alloy drill pipe has a wider application in the field, and is suitable for operations under various complex working conditions.


2009 ◽  
Vol 9 (4) ◽  
pp. 15595-15640 ◽  
Author(s):  
C. R. Ruehl ◽  
P. Y. Chuang ◽  
A. Nenes

Abstract. The hygroscopicity of an aerosol largely determines its influence on climate and, for smaller particles, atmospheric lifetime. While much aerosol hygroscopicity data is available at lower relative humidities (RH) and under cloud formation conditions (RH>100%), relatively little data is available at high RH (99.2 to 99.9%). We measured the size of droplets at high RH that had formed on particles composed of one of seven compounds with dry diameters between 0.1 and 0.5 μm, and calculated the hygroscopicity of these compounds. We use a parameterization of the Kelvin term, in addition to a standard parameterization (κ) of the Raoult term, to express the hygroscopicity of surface-active compounds. For inorganic compounds, hygroscopicity could reliably be predicted using water activity data and assuming a surface tension of pure water. In contrast, most organics exhibited a slight to mild increase in hygroscopicity with droplet diameter. This trend was strongest for sodium dodecyl sulfate (SDS), the most surface-active compound studied. The results suggest that partitioning of surface-active compounds away from the bulk solution, which reduces hygroscopicity, dominates any increases in hygroscopicity due to reduced surface tension. This is opposite to what is typically assumed for soluble surfactants. Furthermore, we saw no evidence that micellization limits SDS activity in micron-sized solution droplets, as observed in macroscopic solutions. These results suggest that while the high-RH hygroscopicity of inorganic compounds can be reliably predicted using readily available data, surface-activity parameters obtained from macroscopic solutions with organic solutes may be inappropriate for calculations of the hygroscopicity of micron-sized droplets.


2013 ◽  
Vol 639-640 ◽  
pp. 943-946
Author(s):  
Jiao Long He ◽  
Yong Zhou ◽  
Zhong Ai Jiang

Based on the reinforcing mechanism of dynamic replacement method ,this article put forward the construction parameters and measures of dynamic replacement method , combining with the result of actual engineering field testing experiment. The field load test, standard penetration test and pore water pressure test results show that the characteristic value of subgrade bearing capacity is more than 130 kpa when the tailings residue subgrade has been managed with dynamic replacement method, providing references for applied research on dynamic replacement method in tailings residue subgrade reinforcement.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Kumaran Kannaiyan ◽  
Kanjirakat Anoop ◽  
Reza Sadr

The influence of nanoparticles' dispersion on the physical properties of aviation fuel and its spray performance has been investigated in this work. To this end, the conventional Jet A-1 aviation fuel and its mixtures with alumina nanoparticles (nanofuel) at different weight concentrations are investigated. The key fuel physical properties such as density, viscosity, and surface tension that are of importance to the fuel atomization process are measured for the base fuel and nanofuels. The macroscopic spray features like spray cone angle and sheet breakup length are determined using the shadowgraph technique. The microscopic spray characteristics such as droplet diameter, droplet velocity, and their distributions are also measured by employing phase Doppler anemometry (PDA) technique. The spray performance is measured at two nozzle injection pressures of 0.3 and 0.9 MPa. The results show that with the increase in nanoparticle concentrations in the base fuel, the fuel viscosity and density increase, whereas the surface tension decreases. On the spray performance, the liquid sheet breakup length decreases with increasing nanoparticle concentrations. Furthermore, the mean droplet diameters of nanofuel are found to be lower than those of the base fuel.


2015 ◽  
Vol 61 (3) ◽  
pp. 3-18
Author(s):  
M. Łupieżowiec ◽  
P. Kanty

Abstract This paper presents the analysis of the influence of works related to the dynamic replacement column formation on the bridge pillar and the highway embankment located nearby. Thanks to DR columns, it is possible to strengthen the soil under road embankment in a very efficient way. However, the construction of such support carries risk to buildings and engineering structures located in the neighbourhood. Therefore modelling and monitoring of the influence of the conducted works should be an indispensable element of each investment in which dynamic replacement method is applied. The presented issue is illustrated by the example of soil strengthening with DR columns constructed under road embankment of DTŚ highway located in Gliwice. During the inspection, the influence of vibrations on the nearby bridge pillar and road embankment was examined. The acceleration values obtained during these tests were used to verify the elaborated numerical model.


Sign in / Sign up

Export Citation Format

Share Document