scholarly journals Geostatic modeling of the clastic reservoir: a case study the Late Cenomanian Abu Roash G Member, Hamra Field, Abu Gharadig Basin, Western Desert, Egypt

Author(s):  
M. F. Abu-Hashish ◽  
M. M. Abuelhassan ◽  
Gamal Elsayed

AbstractRecent advances in computer sciences have resulted in a significant improvement in reservoir modeling, which is an important stage in studying and comprehending reservoir geometry and properties. It enables the collection of various types of activities such as seismic, geological, and geophysical aspects in a single container to facilitate the characterization of reservoir continuity and homogeneity. The main goal of this work is to build a three-dimensional reservoir model of the Abu Roash G reservoir in the Hamra oil field with enough detail to represent both vertical and lateral reservoir heterogeneity at the well, multi-well, and field scales. The Late Cenomanian Abu Roash G Member is the main reservoir in the Hamra oil field. It is composed mainly of shale, carbonate and some streaks of sandstone, these streaks are shaly in some parts. Conducting the 3D geostatic model begins with the interpretation of seismic data to detect reflectors and horizons, as well as fault picking to explain the structural framework and frequently delineate the container style with proposed limitations to construct the structural model. The lithology and physical properties of Abu Roash G reservoir rock, including total and effective porosity and fluid saturation, were determined using well log data from four wells in the Hamra field. The constructed 3D geological model of the Abu Roash G has showed that the petrophysical parameters are controlled by the facies distribution and structure elements, whereas properties are the central part to the northern side of the deltaic environment than the other sides of the same environment. The model will be useful in displaying the reservoir community and indicating prospective zones for enhancing the dynamic model to improve the behavior of the flow unit productivity, as well as, section of the best sites for the future drilling.

Author(s):  
A. A. Kushlaf ◽  
A. E. El Mezweghy

This paper is to study the structural framework, stratigraphy, and the petro-physical characteristics of Facha reservoir of Gir Formation in Aswad oil field, which is located in Block NC74B at the Zella Trough, south-west of Sirt basin, Libya. The data used have been got from well-logging records of nine exploratory wells distributed in Aswad oil field. These data have been analyzed and interpreted through using analytical cross-plots in order to calculate the petro-physical parameters. The results revealed that the lithological facies consists mainly of dolomite. Moreover, they revealed that the lateral distribution of the petro-physical parameters of Facha reservoir indicates that average porosity is 10-23%, average water saturation is 52- 93%, and net pay is of 62.44 ft. This shows that Facha member is a good reservoir rock. The variations in values between wells have been affected by the trend of faults; this indicates that the area is structurally controlled.


2019 ◽  
Vol 10 (2) ◽  
pp. 371-393
Author(s):  
Mohamed F. Abu-Hashish ◽  
Hamdalla A. Wanas ◽  
Emad Madian

Abstract This study aims to construct 3D geological model using the integration of seismic data with well log data for reservoir characterization and development of the hydrocarbon potentialities of the Upper Cretaceous reservoirs of GPT oil field. 2D seismic data were used to construct the input interpreted horizon grids and fault polygons. The horizon which cut across the wells was used to perform a comprehensive petrophysical analysis. Structural and property modeling was distributed within the constructed 3D grid using different algorithms. The workflow of the 3D geological model comprises mainly the structural and property modeling. The structural model includes fault framework, pillar girding, skeleton girding, horizon modeling and zonation and layering modeling processes. It shows system of different oriented major and minor faults trending in NE–SW direction. The property modeling process was performed to populate the reservoir facies and petrophysical properties (volume of shale (Vsh), fluid saturations (Sw and Sh), total and effective porosities (Φt and Φe), net to gross thickness and permeability) as extracted from the available petrophysical analysis of wells inside the structural model. The model represents a detailed zonation and layering configuration for the Khoman, Abu Roash and Bahariya formations. The 3D geological model helps in the field development and evaluates the hydrocarbon potentialities and optimizes production of the study area. It can be also used to predict reservoir shape and size, lateral continuity and degree of interconnectivity of the reservoir, as well as its internal heterogeneity.


2012 ◽  
Vol 490-495 ◽  
pp. 2667-2671
Author(s):  
Jing Wang

The article introduces the necessity and superiority of development of CAED. It elaborates the framework and composition of the knowledge repository of CAED system and puts forward the opinion of three-dimensional Man-machine system modeling, in which the crucial elements and methods of system modeling are stressed. Based on all these ideas, the structural framework of CAED system is presented


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. C81-C92 ◽  
Author(s):  
Helene Hafslund Veire ◽  
Hilde Grude Borgos ◽  
Martin Landrø

Effects of pressure and fluid saturation can have the same degree of impact on seismic amplitudes and differential traveltimes in the reservoir interval; thus, they are often inseparable by analysis of a single stacked seismic data set. In such cases, time-lapse AVO analysis offers an opportunity to discriminate between the two effects. We quantify the uncertainty in estimations to utilize information about pressure- and saturation-related changes in reservoir modeling and simulation. One way of analyzing uncertainties is to formulate the problem in a Bayesian framework. Here, the solution of the problem will be represented by a probability density function (PDF), providing estimations of uncertainties as well as direct estimations of the properties. A stochastic model for estimation of pressure and saturation changes from time-lapse seismic AVO data is investigated within a Bayesian framework. Well-known rock physical relationships are used to set up a prior stochastic model. PP reflection coefficient differences are used to establish a likelihood model for linking reservoir variables and time-lapse seismic data. The methodology incorporates correlation between different variables of the model as well as spatial dependencies for each of the variables. In addition, information about possible bottlenecks causing large uncertainties in the estimations can be identified through sensitivity analysis of the system. The method has been tested on 1D synthetic data and on field time-lapse seismic AVO data from the Gullfaks Field in the North Sea.


2013 ◽  
Vol 69 (12) ◽  
pp. i85-i86 ◽  
Author(s):  
Youssef Ben Smida ◽  
Abderrahmen Guesmi ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

The title compound, trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate), was prepared by a solid-state reaction. It is isostructural with Na3Co2AsO4As2O7. The framework shows the presence of CoX22O12(X2 is statistically disordered with As0.95P0.05) units formed by sharing corners between Co1O6octahedra andX22O7groups. These units form layers perpendicular to [010]. Co2O6octahedra andX1O4(X1 = As0.54P0.46) tetrahedra form Co2X1O8chains parallel to [001]. Cohesion between layers and chains is ensured by theX22O7groups, giving rise to a three-dimensional framework with broad tunnels, running along thea- andc-axis directions, in which the Na+ions reside. The two Co2+cations, theX1 site and three of the seven O atoms lie on special positions, with site symmetries 2 andmfor the Co,mfor theX1, and 2 andm(× 2) for the O sites. One of two Na atoms is disordered over three special positions [occupancy ratios 0.877 (10):0.110 (13):0.066 (9)] and the other is in a general position with full occupancy. A comparison between structures such as K2CdP2O7, α-NaTiP2O7and K2MoO2P2O7is made. The proposed structural model is supported by charge-distribution (CHARDI) analysis and bond-valence-sum (BVS) calculations. The distortion of the coordination polyhedra is analyzed by means of the effective coordination number.


2015 ◽  
Vol 68 (2) ◽  
pp. 153-162 ◽  
Author(s):  
Daniel Quinaud Rossi ◽  
Issamu Endo

AbstractThis study focuses on the eastern flank of the Santa Rita syncline (Dorr 1969), with specific emphasis on the region known as Fábrica Nova. Important iron ore deposits are located on the flanks of this structure, such as Timbopeba, Alegria, São Luiz, Tamanduá, Almas and Fábrica Nova. The Santa Rita syncline is a fold with N-S axial direction and of subregional scale, with roots in the adjacent basement of the Santa Bárbara Complex and sectioned by the Água Quente thrust fault. The hypothesis of this study is that the structural framework of the region resulted from the superposition of at least three deformation phases on the Ouro Preto nappe. The Fábrica Nova mine, located in the central portion of the study area, is embedded in a synformal structure with a 100/20 trending axis named Fábrica Nova synform. The proposed model to explain the particular structural geometry of this region is based on the flanking folding mechanism (Passchier 2001). This mechanism may have been developed by E-W crustal shortening during the F4 tectonic deformation phase.


2021 ◽  
pp. 4810-4818
Author(s):  
Marwah H. Khudhair

     Shuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zones. These zones are A, B, and C, each can be split into three rock intervals in respect to the bulk porosity measurements. The resulted porosity intervals are: (I) High to medium effective porosity, (II) High to medium inactive porosity, and (III) Low or non-porosity intervals. In relevance to porosity, resistivity, and water saturation points of view, there are two main reservoir horizon intervals within Shuaiba Formation. Both horizons appear in the middle part of the formation, being located within the wells Ns-1, 2, and 3. These intervals are attributed to high to medium effective porosity, low shale content, and high values of the deep resistivity logs. The second horizon appears clearly in Ns-2 well only.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1713-C1713
Author(s):  
Ki-Min Park ◽  
Eunji Lee ◽  
Huiyeong Ju ◽  
Suk-Hee Moon ◽  
Shim Sung Lee

Our interest in the development of MOFs with the cavities controlled by guest species has led us to investigate the MOFs based on calix[4]arene derivatives, in which metal ions link the calix unit to give the networks with the cavities accommodating several guest species, because the calix[4]arene-based MOFs contain porosity associated with both the ligand itself and the structural framework. In the present work, we employed a low rim-functionalized calix[4]arene tetraacetic acid (H4CTA) with 1,3-alternative conformation as a multidentate building block and alkyldiamines as the guest molecules. In the solvothermal reaction of H4CTA and Zn(II) ion in the presence of alkyldiamines, two types of new MOFs based on calix[4]arene tetraacetate (CTA4-) depending on the lengths of α,ω–alkyldiammonium guests have been synthesized by including suitable alkyldiammonium guests. Their single-crystal X-ray diffraction analyses reveal that the short alkyldiammonium guests such as ethyldiammonium, propyldiammonium, and butyldiammonium lead to form two-dimensional framework with the cavity consisting of two CTA4-and four Zn(II) ions whereas the alkyldiammonium guests such as heptyldiammonium, octyldiammonium, nonyldiammonium, and decyldiammonium give rise to generate three-dimensional network with the cavity surrounded by six CTA4-and four Zn(II) ions. The alkyldiammonium guests in both MOFs are well accommodated by each cavity via a variety of supramolecular interactions including electrostatic interactions, hydrogen bonds and van der Waals interactions. We will present and discuss a study on the syntheses and characterization of two new MOFs based on calix[4]arene derivative.


Sign in / Sign up

Export Citation Format

Share Document