A CNN Model for Cardiac Arrhythmias Classification Based on Individual ECG Signals

Author(s):  
Yuan Zhang ◽  
Sen Liu ◽  
Zhihui He ◽  
Yuwei Zhang ◽  
Changming Wang
IRBM ◽  
2020 ◽  
Vol 41 (4) ◽  
pp. 185-194 ◽  
Author(s):  
S. Sahoo ◽  
M. Dash ◽  
S. Behera ◽  
S. Sabut

Author(s):  
E. Kyriacou ◽  
D. Hoplaros ◽  
P. Chimonidou ◽  
G. Matheou ◽  
M. Millis ◽  
...  

Arrhythmia is one of the most difficult problems in cardiology and especially in pediatric cardiology. In this study, the authors present a mobile health (m-health) system that can be used for continuous monitoring of children (ages 0-16 years) with suspected cardiac arrhythmias. The system is able to carry-out real-time acquisition and transmission of ECG signals, and facilitate an alarm scheme able to identify possible arrhythmias so as to notify the on-call doctor and the relatives of the child that an event or something that denotes malfunction is happening. In general the problem has been divided into two cases. The first case is called “in-house case”, where the subject is located in his/her house. While the second case is called “moving-patient case”, where the subject might be located anywhere else. The authors’ goal is the continuous 24 hours, monitoring of the child. During the “in house case”, a sensor network installed in the child’s house is used in order to continuously record ECG signals from the patient as well as environmental parameters. The second case is more general. For this case, the child is monitored using the same ECG recording device but the signals are transmitted, through a mobile device, directly to the central monitoring system. The transmission is performed through the use of 2.5G, or 3G, mobile communication networks. The system design, development and technical tests (using an ECG simulator and 20 volunteers) are reported in this paper. The future steps will be the further evaluation of the system on children with suspected cardiac arrhythmias.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012058
Author(s):  
P. Giriprasad Gaddam ◽  
A Sanjeeva reddy ◽  
R.V. Sreehari

Abstract In the current article, an automatic classification of cardiac arrhythmias is presented using a transfer deep learning approach with the help of electrocardiography (ECG) signal analysis. Now a days, an ECG waveform serves as a powerful tool used for the analysis of cardiac arrhythmias (irregularities). The goal of the present work is to implement an algorithm based on deep learning for classification of different cardiac arrhythmias. Initially, the one dimensional (1-D) ECG signals are transformed to two dimensional (2-D) scalogram images with the help of Continuous Wavelet(CWT). Four different categories of ECG waveform were selected from four PhysioNet MIT-BIH databases, namely arrhythmia database, Normal Sinus Rhythm database, Malignant Ventricular Ectopy database and BIDMC Congestive heart failure database to examine the proposed technique. The major interest of the present study is to develop a transferred deep learning algorithm for automatic categorization of the mentioned four different heart diseases. Final results proved that the 2-D scalogram images trained with a deep convolutional neural network CNN with transfer learning technique (AlexNet) pepped up with a prominent accuracy of 95.67%. Hence, it is worthwhile to say the above stated algorithm demonstrates as an effective automated heart disease detection tool


2018 ◽  
Vol 27 (11) ◽  
pp. 1850169 ◽  
Author(s):  
Borisav Jovanović ◽  
Srdan Milenković ◽  
Milan Pavlović

Artefacts which are present in electrocardiogram (ECG) recordings distort detection of life-threatening arrhythmias such as ventricular tachycardia and ventricular fibrillation. The method examines single ECG lead and exploits time domain signal parameters for real-time detection of severe cardiac arrhythmias. The method is dedicated to implementation in mobile ECG telemetry systems, which are designed by using low-power microcontrollers, operating more than a week on a single battery charge. The method has been validated on publicly available databases and the results are presented. We verified our method on ECG signals obtained without pre-selection meaning that the noisy intervals were not omitted from signal analysis.


Author(s):  
V.Mahesh ◽  
A. Kandaswamy ◽  
C. Vimal ◽  
B. Sathish

Heart Rate Variability (HRV) analysis is a non-invasive tool for assessing the autonomic nervous system and for arrhythmia detection and classification. This paper presents a Random Forest classifier based diagnostic system for detecting cardiac arrhythmias using ECG data. The authors use features extracted from ECG signals using HRV analysis and DWT for classification. The experimental results indicate that a prediction accuracy of more than 98% can be obtained using the proposed method. This system can be further improved and fine-tuned for practical applications.


2018 ◽  
Vol 7 (4) ◽  
pp. 2733
Author(s):  
Raaed Faleh Hassan ◽  
Sally Abdulmunem Shaker

Accurate diagnosis of arrhythmias plays a crucial role in saving the lives of many heart patients. The aim of this research is to find the more efficient method to diagnosis electrocardiogram (ECG) diseases. This work presents the use of Backpropagation neural network (BPNN) and fuzzy logic for automatic detection of cardiac arrhythmias based on analysis of the ECG. These a more valuable tool used to classify ECG signals in cardiac patients. Data collected from physioBank ATM. The analysis of the ECG signal is performed in MATLAB environment. In BPNN the results appear that the only two misclassifications happened to result in an accuracy of 90.4%. while in fuzzy inference system the results appear that the classification accuracy is 100%.   


2021 ◽  
Vol 8 (2) ◽  
pp. 35-41
Author(s):  
Nazanin Tataei Sarshar ◽  
Mehdi Abdossalehi

Today, cardiovascular disease has become an epidemic. Statistics show that one person dies every 33 seconds due to cardiovascular disease. It is estimated that 33% of men and 10% of women have a heart attack before the age of 60. Arrhythmias are abnormal beats that cause the heart to beat too fast or too slow to pump. Automatic electrocardiogram analysis is critical to the diagnosis and treatment of heart patients. There are several learning methods for analyzing ECG signals to diagnose arrhythmias. In the proposed method, the heart rate signals are decomposed into different sub bands using the Tunable Q-Factor Wavelet Transform (TQWT) method, then the features are extracted and modified using classification with the aim of better classifying and separating data in the process of identifying the clinical features of the class. They are classified so that normal people and people with cardiac arrhythmias can be distinguished from their ECG signals. The results showed that the proposed method classifies the ECG signal with 99.25% accuracy. Since accuracy in diagnosing cardiac arrhythmias in medicine is a vital and important factor, so the proposed method can be very effective for the decision of cardiologists.


Sign in / Sign up

Export Citation Format

Share Document