Genome-wide analysis of LATERAL ORGAN BOUNDARIES DOMAIN-in Physcomitrella patens and stress responses

2020 ◽  
Vol 42 (6) ◽  
pp. 651-662
Author(s):  
Xiaolong Huang ◽  
Huiqing Yan ◽  
Yanjing Liu ◽  
Yin Yi
2019 ◽  
Vol 20 (21) ◽  
pp. 5360 ◽  
Author(s):  
Hengzhi Liu ◽  
Minxuan Cao ◽  
Xiaoli Chen ◽  
Minghui Ye ◽  
Peng Zhao ◽  
...  

Lateral organ boundaries domain (LBD) proteins belong to a particular class of transcription factors of lateral organ boundary (LOB) specific domains that play essential roles in plant growth and development. However, a potato phylogenetic analysis of the LBD family has not been fully studied by scholars and researchers. In this research, bioinformatics methods and the growth of potatoes were used to identify 43 StLBD proteins. We separated them into seven subfamilies: Ia, Ib, Ic, Id, Ie, IIa and IIb. The number of amino acids encoded by the potato LBD family ranged from 94 to 327. The theoretical isoelectric point distribution ranged from 4.16 to 9.12 Kda, and they were distributed among 10 chromosomes. The results of qRT-PCR showed that the expression levels of StLBD2-6 and StLBD3-5 were up-regulated under drought stress in the stem. The expression levels of StLBD1-5 and StLBD2-6 were down-regulated in leaves. We hypothesized that StLBD1-5 was down-regulated under drought stress, and that StLBD2-6 and StLBD3-5 up-regulation might help to maintain the normal metabolism of potato and enhance the potatoes’ resistance to drought.


2021 ◽  
Vol 13 (5) ◽  
pp. 2826
Author(s):  
Yan Tong ◽  
Hui Huang ◽  
YuHua Wang

Trihelix transcription factors play important roles in plant growth, development and various stress responses. In this study, we identified 32 trihelix family genes (DoGT) in the important Chinese medicinal plant Dendrobium officinale. These trihelix genes could be classified into five different subgroups. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Various stresses responsive cis-elements presented in the promoters of DoGT genes, suggesting that the trihelix genes might respond to the environmental stresses. Expressional changes of DoGT genes in three tissues and under cold treatment suggested that trihelix genes were involved in diverse functions during D. officinale development and cold tolerance. This study provides novel insights into the phylogenetic relationships and functions of the D. officinaletrihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 413
Author(s):  
Qing Guo ◽  
Li Li ◽  
Kai Zhao ◽  
Wenjing Yao ◽  
Zihan Cheng ◽  
...  

SQUAMOSA promoter binding protein (SBP) is a kind of plant-specific transcription factor, which plays a crucial role in stress responses and plant growth and development by activating and inhibiting the transcription of multiple target genes. In this study, a total of 30 SBP genes were identified from Populus trichocarpa genome and randomly distributed on 16 chromosomes in poplar. According to phylogenetic analysis, the PtSBPs can be divided into six categories, and 14 out of the genes belong to VI. Furthermore, the SBP genes in VI were proved to have a targeting relationship with miR156. The homeopathic element analysis showed that the promoters of poplar SBP genes mainly contain the elements involved in growth and development, abiotic stress and hormone response. In addition, there existed 10 gene segment duplication events in the SBP gene duplication analysis. Furthermore, there were four poplar and Arabidopsis orthologous gene pairs among the poplar SBP members. What is more, poplar SBP gene family has diverse gene expression pattern under salt stress. As many as nine SBP members were responding to high salt stress and six members possibly participated in growth development and abiotic stress. Yeast two-hybrid experiments indicated that PtSBPs can form heterodimers to interact in the transcriptional regulatory networks. The genome-wide analysis of poplar SBP family will contribute to function characterization of SBP genes in woody plants.


2021 ◽  
Author(s):  
Rania Jbir Koubaa ◽  
Mariem Ayadi ◽  
Mohamed Najib Saidi ◽  
Safa Charfeddine ◽  
Radhia Gargouri Bouzid ◽  
...  

Abstract As antioxidant enzymes, catalase (CAT) protects organisms from oxidative stress via the production of reactive oxygen species (ROS). These enzymes play important roles in diverse biological processes. However, little is known about the CAT genes in potato plants despite its important economical rank of this crop in the world. Yet, abiotic and biotic stresses severely hinder growth and development of the plants which affects the production and quality of the crop. To define the possible roles of CAT genes under various stresses, a genome-wide analysis of CAT gene family has been performed in potato plant.In this study, the StCAT gene’s structure, secondary and 3D protein structure, physicochemical properties, synteny analysis, phylogenetic tree and also expression profiling under various developmental and environmental cues were predicted using bioinformatics tools. The expression analysis by RT-PCR was performed using commercial potato cultivar. Three genes encoding StCAT that code for three proteins each of size 492 aa, interrupted by seven introns have been identified in potatoes. StCAT proteins were found to be localized in the peroxisome which is judged as the main H2O2 cell production site during different processes. Many regulating cis-elements related to stress responses and plant hormones signaling were found in the promoter sequence of each gene. The analysis of motifs and phylogenetic trees showed that StCAT are closer to their homologous in S. lycopersicum and share a 41% – 95% identity with other plants’ CATs. Expression profiling revealed that StCAT1 is the constitutively expressive member; while StCAT2 and StCAT3 are the stress-responsive members.


Sign in / Sign up

Export Citation Format

Share Document