scholarly journals Effect of peak perforation on flow past a conic cylinder at Re=100: drag, lift and Strouhal number

2017 ◽  
Vol 31 (3) ◽  
pp. 330-340 ◽  
Author(s):  
Li-ming Lin ◽  
Xing-fu Zhong ◽  
Ying-xiang Wu
Keyword(s):  
Author(s):  
Y. T. Krishne Gowda ◽  
Ravindra Holalu Venkatdas ◽  
Vikram Chowdeswarally Krishnappa

In many mechanical engineering applications, separated flows often appear around any object such as tall buildings, monuments, and towers are permanently exposed to wind. Similarly, piers, bridge pillars, and legs of offshore platforms are continuously subjected to the load produced by maritime or fluvial streams. These bodies usually create a large region of separated flow and a massive unsteady wake region in the downstream. The highly asymmetric and periodic nature of flow in the downstream has attracted the attention of physicists, engineers and CFD practitioners. A lot of research work is carried out for a square cylinder but flow past square cylinders with and without corner modification work is not taken up. This motivated to take up the task of flow past two different sized square cylinders, numerically simulated. A Reynolds number of 100 and 200 is considered for the investigation. The flow is assumed to be two dimensional unsteady and incompressible. The computational methodology is carried out once the problem is defined the first step in solving the problem is to construct a geometry on which the simulation is planned. Once the geometry is constructed, proper assignment of its boundaries in accordance to the actual physical state is to be done. The various boundary options that are to be set. After setting the boundary types, the continuum type is set. The geometry is discretized into small control volumes. Once the surface mesh is completed, the mesh details are exported to a mesh file, then exported to Fluent, which is CFD solver usually run in background mode. This helps to prioritize the execution of the run. The run would continue until the required convergence criterion is reached or till the maximum number of iterations is completed. Results indicate, in case of chamfered and rounded corners in square cylinder, there is decrease in the wake width and thereby the lift and drag coefficient values. The form drag is reduced because of a higher average pressure downstream when separation is delayed by corner modification. The lift coefficients of Square cylinder with corner modification decreases but Strouhal number increases when compared with a square cylinder without corner modification. Strouhal number remains same even if magnitude of oscillations is increased while monitoring the velocity behind the cylinder. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. As the centre distance between two cylinders i.e., pitch-to-perimeter ratio is increased to 6,the behavior of the flow almost approaches to that of flow past a square cylinder of with and without modification of same condition. When the perimeter of the upstream cylinder with and without modification is larger than the downstream cylinder, the size of the eddies is always bigger in between the cylinders compared to the downstream of the second cylinder. The flow velocity in between the cylinders with and without corner modification are less compared to the downstream of the second cylinder. As the distance increases, the flow velocity in between the cylinders become almost equal to the downstream of the second cylinder. The results are presented in the form of streamlines, flow velocity, pressure distribution. drag coefficient, lift coefficient and Strouhal number.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Raheela Manzoor ◽  
Abdul Ghaffar ◽  
Dumitru Baleanu ◽  
Kottakkaran Sooppy Nisar

A two-dimensional numerical study was conducted for flow past a square rod in the presence of two control rods. One is placed vertically in the upstream direction and the second one is placed horizontally in the downstream direction of the square rod. The influence of gap spacing was studied by taking g1 = 1–5 and g2 = 0.5–5 (where g1 is the gap between the upstream control rod and the main rod, and g2 is the space between the main rod and the downstream control rod) at Re = 160. The simulation results were obtained in the form of vorticity contour, drag and lift coefficients, Strouhal number, and force statistics. Under the effect of gap spacing, three different flow modes were found and named according to their behavior. It was found that the mean drag coefficient showed decreasing behavior by increasing the value of g2 continually at a fixed value of g1. The largest value of C d m e a n was found at (g1, g2) = (1, 1) and the greatest percentage reduction in C d m e a n was obtained at (g1, g2) = (1, 3), which is 139.72%. The effect of thrust was also noticed for all selected values of g1 and g2. Furthermore, it was noticed that the Strouhal number and the root mean square values of the drag and lift coefficients smaller values than the single rod values, except for the Clrms value of (g1, g2) = (1, 3) and (1, 4).


Author(s):  
Y. T. Krishne Gowda ◽  
Holalu Venkatdas Ravindra ◽  
Vikram Chowdeswarally Krishnappa

Flow past square cylinders has attracted a great deal of attention because of its practical significance in engineering e.g., High rise buildings, monuments and towers. Similarly, bridge pillars, and legs of offshore platforms are continuously subjected to the load produced by maritime or fluvial streams. The presence of separated flows, reattachment, formation the vortices, un steadiness of flow, mass and momentum transfer across shear layer makes the flow field quite complex. Many research work was carried out for a single square cylinder and flow past two square cylinders, but with corner medications in square cylinder of different size arranged in tandem was not taken up. This has motivated to take up the flow past two different sized square cylinders i.e., smaller in upstream and larger in downstream which is numerically simulated by using Fluent software. Reynolds number of 100 and 200 is considered for the investigation. The flow is assumed to be two dimensional, unsteady and incompressible. The computational methodology is carried out once the problem is defined, the first step in solving the problem is to construct a geometry then proper assignment of boundaries are set. After setting the boundary types, the geometry is discretized into small control volumes. Once the surface mesh is completed by using Gambit software, the mesh along with boundary conditions are exported to fluent, which is CFD solver usually run in background mode. The run would continue until the required convergence criterion is reached or till the maximum number of iterations is completed. Results indicate, in case of chamfered and rounded corners in square cylinders of different size, there is decrease in the wake width and thereby the lift and drag coefficient values. The lift coefficients in Square cylinders of different size with corner modifications decreases but Strouhal number increases when compared with a single square cylinder without corner modifications. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. As the centre distance between two square cylinders i.e., PPR (pitch to perimeter ratio) with and without corner modifications is increased to 6, the flow velocity almost approaches to flow past a single square cylinder with and without modifications for same condition. When the size of the upstream square cylinder with and without modifications is smaller than that of the downstream square cylinder, the size of the eddies is always smaller in between the cylinders compared to the downstream of the second cylinder. The flow velocity in between the cylinders with and without corner modifications are less compared to the downstream of the second cylinder. Pressure on the downstream side of the cylinder is smaller than that on the upstream side of the cylinder for with and without corner modifications. Also, the front portion of the cylinder is experiencing highest pressure compared to the second cylinder for all the three cases i.e., PPR = 2, 4 and 6. Pressure at the upper side, bottom side and back side of square cylinder with and without corner modifications is of negative pressure, it is because of vortices generated at that surfaces. The downstream cylinder is found to experience higher lift compared to the upstream cylinder. The results are presented in the form of while the downstream cylinder is found to experience higher drag compared to the streamlines, flow velocity, pressure distribution, drag coefficient, lift coefficient and strouhal number.


1967 ◽  
Vol 27 (2) ◽  
pp. 273-289 ◽  
Author(s):  
J. R. Calvert

The wake behind a cone in incompressible flow has the form of a closed bubble. Measurements of velocity, turbulence and static pressure for various cone angles show that the wakes are all essentially similar. A wake Strouhal number may be defined, which is the same for all the models. A disk may be treated as a cone of 180° vertex angle.


2018 ◽  
Vol 192 ◽  
pp. 02030
Author(s):  
Sodsai Lamtharn ◽  
Monsak Pimsarn

Numerical simulation of two-dimensional laminar unsteady flow past a right trapezoidal cylinder at low Reynolds number (Re = 100), zero of the flow approaching angle and sharpening angle of the right trapezoidal of 22.5° with a side ratio B/A = 1 are carried out to provide moreapplicable data for engineering design of barred tee in aspect of structural integrity. A finite volume method, non-uniform meshing with second-order implicit time discretization into eight-node quadratic quadrilateral finite elements is employed. An incompressible flow SIMPLEC code with constant fluid properties is used. The convective terms using a third-order QUICK scheme. The numerical simulation result is compared against the published results of flow past a square cylinder. The effect of sharpening angle on the response of the right trapezoidal cylinder is investigated. A special study of the effects of flow on significant factor for time step, grid independence, blockage ratio, domain size, upstream and downstream extents, size domain next to cylinder and size domain extent are performed systematically. The Strouhal number and RMS lift coefficients of fully saturated flow are calculated. The result shown that increasing of sharpening angle, the Strouhal number is negligible changed whilst the RMS lift coefficients significantly increased.


1973 ◽  
Vol 61 (1) ◽  
pp. 187-198 ◽  
Author(s):  
C. J. Apelt ◽  
G. S. West ◽  
Albin A. Szewczyk

Experiments were carried out using models having L/D [les ] 2 and the resulting pressure distributions and vortex shedding characteristics are presented. A simple visualization technique which provides explanations of some of the measured results is described. It is concluded that splitter planes reduce the drag markedly by stabilizing the separation points and produce a wake narrower than that for a plain cylinder, raise the base pressure by as much as 50% and affect the Strouhal number to a lesser degree. Careful measurement techniques have enabled these effects to be presented accurately.


2015 ◽  
Vol 771 ◽  
pp. 229-263 ◽  
Author(s):  
X. Mao

Amplifications of flow past a backward-facing step with respect to optimal inflow and initial perturbations are investigated at Reynolds number 500. Two mechanisms of receptivity to inflow noise are identified: the bubble-induced inflectional point instability and the misalignment effect downstream of the secondary bubble. Further development of the misalignment results in decay of perturbations from $x=28$ onwards (the step is located at $x=0$), as has been observed in previous non-normality studies (Blackburn et al., J. Fluid Mech., vol. 603, 2008, pp. 271–304), and eventually limits the receptivity. The receptivity is found to be maximized at an inflow perturbation frequency of ${\it\omega}=0.50$ and a spanwise wavenumber of ${\it\beta}=0$, where the inflow noise takes full advantage of both mechanisms and is amplified over two orders of magnitude in terms of the velocity magnitude. In direct numerical simulations (DNS) of the flow perturbed by optimal or random inflow noise, vortex shedding, flapping of bubbles, three-dimensionality and turbulence are observed in succession as the magnitude of the inflow noise increases. Similar features of linear and nonlinear receptivity are observed at higher Reynolds numbers. The Strouhal number of the bubble flapping is 0.08, at which the receptivity to inflow noise reaches a maximum. This Strouhal number is close to reported values extracted from DNS or large eddy simulations (LES) at larger Reynolds numbers (Le et al., J. Fluid Mech., vol. 330, 1997, pp. 349–374; Kaiktsis et al., J. Fluid Mech., vol. 321, 1996, pp. 157–187; Métais, New Trends in Turbulence, 2001, Springer; Wee et al., Phys. Fluids, vol. 16, 2004, pp. 3361–3373). Methods to further clarify the mechanisms of receptivity and to suppress the noise amplifications by modifying the base flow using a linearly optimal body force are proposed. It is observed that the mechanisms of optimal noise amplification are fully revealed by the distribution of the base flow modification, which weakens the bubble instabilities and misalignment effects and subsequently reduces the receptivity significantly. Comparing the base flow modifications with respect to amplifications of inflow and initial perturbations, it is found that the maximum receptivity to initial perturbations is highly correlated with the receptivity to inflow noise at the optimal frequency ${\it\omega}=0.50$, and the correlation reduces as the inflow frequency deviates from this optimal value.


Author(s):  
Sajjad Miran ◽  
Chang Hyun Sohn

Purpose – The purpose of this paper is to numerically investigate the influence of corner radius on flow past a square cylinder at a Reynolds number 500. Design/methodology/approach – Six models were studied, for R/D=0 (square cylinder), 0.1, 0.2, 0.3, 0.4, and 0.5 (circular cylinder), where R is the corner radius and D is the characteristic dimension of the body. The transient two-dimensional (2D) laminar and large eddy simulations (LES) models were employed using finite volume code. The Strouhal number, mean drag coefficient (CD), and root mean square (RMS) value of lift coefficient (CL,RMS), for different R/D values, were computed and compared with experimental and other numerical results. Findings – The computational results showed good agreement with previously published results for a Reynolds number, Re=500. It was found that the corner effect on a square cylinder greatly influences the flow characteristics around the cylinder. Results indicate that, as the corner radius ratio, R/D, increases, the Strouhal number increases rapidly for R/D=0-0.2, and then gradually rises between R/D=0.2 and 0.5. The minimum values of the mean drag coefficient and the RMS value of lift coefficient were found around R/D=0.2, which is verified by the time averaged streamwise velocity deficit profile. Originality/value – On the basis of the numerical results, it is concluded that rounded corners on a square cylinder are useful in reducing the drag and lift forces generated behind a cylinder. Finally, it is suggested that with a rounded corner ratio of around R/D=0.2, the drag and oscillation of the cylinder can be greatly reduced, as compared to circular and square cylinders.


Author(s):  
Y. T. Krishne Gowda ◽  
H. V. Ravindra ◽  
C. K. Vikram

Flow past the two square cylinders with and without corner modification in a tandem arrangement has been simulated using a CFD code FLUENT. A Reynolds number of 100 and pitch to perimeter ratios (PPR) of 2,4 and 6 are considered for the investigation. The flow is assumed to be two dimensional unsteady and incompressible. The obtained results are presented in the form of streamlines, pressure distribution, monitored velocity, lift coefficient and Strouhal number. Results indicate, in case of chamfered and rounded corners, there is decrease in the wake width and thereby the lift values. For the square cylinders of same perimeters with and without corner modification, the size of the eddy and the monitored velocity in between the square cylinders increases with increase in PPR. Frequency of vortex shedding is same in between the cylinders and in the downstream of the cylinder. Frequency of vortex shedding decreases with the introduction of second cylinder either in the upstream or downstream of the first cylinder. The lift coefficient of square cylinder with corner modification decreases but Strouhal number increases when compared with a square cylinder without corner modification.


Sign in / Sign up

Export Citation Format

Share Document