scholarly journals Mechanical Properties of a Novel Plastic Hinge Seismic Fuse Based on Frictional Energy Dissipation to Avoid Brittle Failures in Beam-to-Column Moment-Resistant Joints

2019 ◽  
Vol 45 (5) ◽  
pp. 3695-3706
Author(s):  
Xiaodong Li ◽  
Qitai Wang ◽  
Guangtian Ma

Abstract Traditional steel structure joints are prone to brittle failure under seismic excitation, and it is difficult to precisely control the location of the resulting plastic hinge or repair these joints after an earthquake. Therefore, based on the energy dissipation principle of the friction pendulum isolation bearing and automobile braking device, a low-cost friction-based plastic hinge (PH) joint is proposed to provide predictable energy dissipation and realize quickly repairable structures. The proposed PH was analysed theoretically, and five half-scale specimens using different bolt and friction materials were tested using cyclic reversing load. The test results showed that models PH-1 and PH-2 with Grade 4.8 and 8.8 limiting bolts, respectively, both provided a plastic rotation angle greater than 0.03 rad, exhibited experimental moment capacities of 0.91 and 0.93 times their theoretical capacities, and exhibited ductility coefficients of 2.75 and 3.14, respectively. It was found that high-strength limiting bolts were unsuitable as they damaged difficult-to-replace PH components. The selected PH configuration experienced damage to only the limiting bolts and friction plates and exhibited good plastic deformation capacity and hysteretic energy dissipation performance that met the plastic rotation, ductility, and friction energy dissipation requirements. Thus, the proposed PH can be used to improve the seismic performance of beam-to-column joints and the frames they form.

2012 ◽  
Vol 166-169 ◽  
pp. 1383-1386
Author(s):  
Hong Dong Ran ◽  
Wen Xv ◽  
Ming Zhou Su

According to the poorly seismic behaviors of composite staggered trusses system, an improved composite staggered trusses system was proposed. Based on the experimental study of a 1/3 scale improved composite staggered truss frame steel structure model under cyclic loading, the seismic behaviors and failure mechanism was studied, and the seismic behaviors was evaluated by the hysteretic behavior, ductility, energy dissipation and rigidity degeneration. The study showed that the improved composite staggered truss steel structures had the advantages in bearing capacity, ductility, deformability and energy dissipation, but the lateral rigidity was weak and non-uniform along its vertical layout. The stress measurement showed that the plastic hinge formed in the web members of the truss firstly, then, in the chord members of the truss, and finally the plastic hinges formed in the column, earthquake energy mostly dissipated by the truss members, the failure mechanism of the improved composite staggered truss steel structures was the beam hinges failure mechanism.


2011 ◽  
Vol 90-93 ◽  
pp. 1144-1148 ◽  
Author(s):  
Yong Duo Liang ◽  
Zhi Guo Sun ◽  
Gong Cai Chi ◽  
Bing Jun Si

The use of high strength reinforcement and high strength concrete in bridge columns is increasing due to many advantages of the high strength materials. In order to study the equivalent plastic hinge length of reinforced concrete bridge columns,37 column test results by using high strength reinforcement and high concrete were collected. Then, the equations proposed by Priestley, Paulay, Telemachos and JTG/T B02-01-2008 to predict the equivalent plastic hinge length of the columns were evaluated based on the experimental results. Influence factors which affect the equivalent plastic hinge length of high strength concrete bridge columns were studied through grey correlation analysis. It is found that, comparing to test results, all the proposed equations show considerable scatter in estimating the plastic hinge length of the high strength bridge columns using high strength reinforcement. The equations proposed by Paulay, Telemachos are not safe, while Priestley and JTG/T B02-01-2008 proposed equations give conservative results. Among the influence factors, the diameter of longitudinal reinforcement is the most important, secondly is the column length and section width. The axial load ratio of the column and transverse reinforcement of the specimens show small influence.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Ling Li ◽  
Wenzhong Zheng ◽  
Ying Wang ◽  
Junke Ma

The additional fixed-end rotation resulting from the strain penetration of longitudinal reinforcement in a reinforced concrete beam-column connection is a crucial factor for the plastic hinge rotation capacity. When it comes to high-strength reinforcement, the effects of strain penetration on fixed-end rotation become more obvious because of the increase in yield strength. In this study, 42 beam-column connections with high-strength hot rolled ribbed bars were designed and tested under monotonic loading at the beam end. The test results show that the rebar strains gradually decrease from the critical section towards the beam-column connection, thereby proving the existence of strain penetration in the beam-column connection. The slippage of the embedment reinforcement at the beam-column interface and additional fixed-end rotations were obtained from the test results. In addition, a parametric study involving the yield strength and diameter of reinforcement, concrete tensile strength, and embedment length in the beam-column connection was performed to investigate the effects of various parameters on the additional fixed-end rotation. Finally, a new simple and practical calculation model for predicting the additional fixed-end rotation was proposed. The prediction shows good agreement with the experimental results.


Author(s):  
Ivan Lukačević ◽  
Tomislav Maleta ◽  
Darko Dujmovic

<p>Dual structures obtained by combining moment resisting frames with innovative bracing systems such as replaceable shear panels or seismic links have significant advantages among conventional solutions. The major advantages of such systems are energy dissipation in the specific locations and re-centring capability which significantly reduces repair costs. On the other hand, design of such systems is driven with specific requirements such as combining different steel grades to ensure elastic behaviour of the flexible part of the system. This paper deals with comparative behaviour analyses of two dual systems combining moment resisting multi-storey frames with eccentric bracing systems. The steel frame consists of three bays with central braced frame and two adjacent moment resisting frames. The bracing system contains either long or short seismic link. Seismic energy dissipation of these systems is completely different. Long seismic links are characterised with a classical plastic hinge in which energy is dissipated through bending while in case of short seismic links seismic energy is dissipated through shear. Multi-linear plastic diagrams for both links have been defined and pushover analyses are performed. The behaviour of the analysed systems based on collapse mechanisms, overstrength ratio, target displacement and possible solutions for re-centring capabilities are discussed. Analysed system with short seismic links despite more complicated modelling and requirements for high strength steel in MRFs, results in higher overstrength ratio regarding the system with long seismic links. It is also far easier to dismantle system with short seismic links, due to the bolted connection of links with the adjacent members.</p>


Author(s):  
Xiangyong Ni ◽  
Shuangyin Cao ◽  
Hassan Aoude

This study examines the influence of cross-section shape on the seismic behaviour of high-strength steel reinforced concrete shear walls (HSS-RC) designed with Grade HRB 600 MPa reinforcement. As part of the study, two flexure-dominant walls with rectangular and T-shaped cross-sections, are tested under reversed cyclic loading. Seismic performance is evaluated by studying the failure characteristics, hysteretic curves, energy dissipation, ductility and reinforcing bar strains in the two walls. As part of the numerical study, two-dimensional (2D) and three-dimensional (3D) finite element modelling (FEM) are used to predict the seismic response of the rectangular and T-shaped walls, respectively. The test results show that compared to the rectangular wall, the flange in the T-shaped HSS-RC wall increased strength, energy dissipation and stiffness, but decreased ductility. The analytical hysteretic curves calculated using 2D and 3D FEM analyses show good agreement with the experimental test results.


2011 ◽  
Vol 97-98 ◽  
pp. 1098-1108 ◽  
Author(s):  
Yue Jun Li ◽  
Liang Li ◽  
Han Cheng Dan

Biological enzyme used for catalyzing reaction of soil is a new material which is completely different from traditional highway material. The solidification mechanism, construction technique and maintenance technique of TerraZyme solidifying the base course of pavement have been discussed and with respect to which the field tests have been studied in this paper. The analysis and test results showed that the advantages of the technique of TerraZyme solidification are no pollution, convenient construction, high strength of solidification, good water stability and low cost. Thus, it has significant social and economic benefits and bright future in practice.


2016 ◽  
Vol 20 (8) ◽  
pp. 1196-1209 ◽  
Author(s):  
Qingshun Yang ◽  
Xinzheng Lu ◽  
Cheng Yu ◽  
Donglian Gu

The outriggers are widely adopted in tall and super-tall buildings. Their energy dissipation capacity can significantly influence the nonlinear seismic responses of the entire building structure. Based on an actual tall building project, the structural responses and energy dissipation capacities of three different outriggers were studied through experiments and finite element analyses. The test results of conventional outrigger specimen showed a steep deterioration after peak strength and an unfavorable energy dissipation capacity due to the global buckling of the braces and the local buckling of the chords after flexural yielding. Using buckling-restrained braces and reduced beam sections in a new design of the outriggers, the energy dissipation capacity and the ductility of the outriggers were significantly improved. The yield and peak strengths were further improved with the use of high-strength steel in chords on a third specimen. The finite element simulation of the three specimens indicated that the initial imperfection of the specimens shall be considered, and the developed finite element models yielded good agreements with the test results. The outcome of this work can provide additional references for the application of the outriggers in tall buildings.


2015 ◽  
Vol 777 ◽  
pp. 27-33 ◽  
Author(s):  
Xu Feng Li ◽  
Xin Wu Wang

The force performance of semi-rigid nodes connection between rigid connection and hinged connection ,which has very high strength and rigidity, good ductility and energy dissipation capacity. At present, it is one of the hot topics in the study of steel structure. This article will study about type T and cross-shaped frame plane frame node characteristics by some experiments. And we will observe the deflection of the two kinds of nodes, the force transmission mechanism and the failure pattern under low reversed cyclic loading test.And then compare the failure mechanism of failure mode and ultimate deformation state and hysteretic performance of the two kinds of nodes, The test results show that the yield load and the yield displacement and energy dissipation coefficient and the equivalent viscous damping ratio of Cross nodes are all greater than type T nodes’. So in the design of steel structure, increasing the component’s constraint can help to improve the seismic performance and stability of the whole structure.


2012 ◽  
Vol 446-449 ◽  
pp. 3390-3393
Author(s):  
Yan Xia Zhang ◽  
Quan Xi Ye ◽  
Lu Yao Wang

Two types of beam Strengthening-Bolt spliced connection were analyzed by using ABAQUS. The results showed that Beam Strengthen- Bolt Spliced Connection can effectively make the relocation of the plastic hinge. The plastic rotation and energy dissipation capacity of beam Strengthen-Bolt spliced connection exhibited excellent.


Sign in / Sign up

Export Citation Format

Share Document