A Comparative Study of Solar Heat Transfer on Roof-Top Water Storage Tank Orientations in Saudi Arabia

2020 ◽  
Vol 45 (7) ◽  
pp. 5517-5528
Author(s):  
Ahmed S. Sowayan
Author(s):  
Mengchao Zhang ◽  
Xiangbin Li ◽  
Xiaolu Fang ◽  
Yuhao Zhang

The presurizer is one of main equipments of PWR Nuclear Power Plant. The heat transfer mechanism will change with temperature’s increasing when the steam with high temperature and high pressure condensates as it sprays into the in-containment refueling water storage tank (IRWST), which will be detrimental to the safety of the reactor. In this study, the flow field and heat transfer characteristics are simulated by means of professional CFD software with k-ε turbulence model and Particle modle when the steam sprays into IRWST through the sprayer. The results show thermal changes of water and steam.


2018 ◽  
Vol 7 (3) ◽  
pp. 991 ◽  
Author(s):  
Hassan Khurshid ◽  
Karthik Silaipillayarputhur

Saudi Arabia is one of the warmer countries in the Middle East region. In the summer months, the ambient temperature reaches 50°C on regular basis. This high temperature has a direct effect on the elevation of water temperatures inside the domestic and commercial over-head tanks. The tanks are predominantly installed on the roof of the buildings without any shade or insulation and are exposed to the direct irradiation from the sun. The tank material is not capable of reducing the effect of solar radiation. Therefore, water gets very hot in the afternoon that it is impossible for the occupants of the residential buildings to take a shower or even wash their hands. This paper studied the effect of solar irradiation on the water temperature in the over-head storage water tanks during the summer months. The temperature rise in the water storage tank was considered for different cases, (i.e.) a free standing tank exposed to direct sun’s irradiation, a tank with shade, a tank with fiber glass insulation, and a tank having insulation along with shade. An analytical model was developed to study the effects of sun’s irradiation and the results were compared with that of experimentation. The results from the water storage tank having insulation exhibited encouraging results.  


2020 ◽  
Vol 180 ◽  
pp. 107029
Author(s):  
Pin Wu ◽  
Zhichao Wang ◽  
Xiaofeng Li ◽  
Zhaowei Xu ◽  
Yingxia Yang ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Musa Manga ◽  
Timothy G. Ngobi ◽  
Lawrence Okeny ◽  
Pamela Acheng ◽  
Hidaya Namakula ◽  
...  

Abstract Background Household water storage remains a necessity in many communities worldwide, especially in the developing countries. Water storage often using tanks/vessels is envisaged to be a source of water contamination, along with related user practices. Several studies have investigated this phenomenon, albeit in isolation. This study aimed at developing a systematic review, focusing on the impacts of water storage tank/vessel features and user practices on water quality. Methods Database searches for relevant peer-reviewed papers and grey literature were done. A systematic criterion was set for the selection of publications and after scrutinizing 1106 records, 24 were selected. These were further subjected to a quality appraisal, and data was extracted from them to complete the review. Results and discussion Microbiological and physicochemical parameters were the basis for measuring water quality in storage tanks or vessels. Water storage tank/vessel material and retention time had the highest effect on stored water quality along with age, colour, design, and location. Water storage tank/vessel cleaning and hygiene practices like tank/vessel covering were the user practices most investigated by researchers in the literature reviewed and they were seen to have an impact on stored water quality. Conclusions There is evidence in the literature that storage tanks/vessels, and user practices affect water quality. Little is known about the optimal tank/vessel cleaning frequency to ensure safe drinking water quality. More research is required to conclusively determine the best matrix of tank/vessel features and user practices to ensure good water quality.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4741
Author(s):  
María Gasque ◽  
Federico Ibáñez ◽  
Pablo González-Altozano

This paper demonstrates that it is possible to characterize the water temperature profile and its temporal trend in a hot water storage tank during the thermal charge process, using a minimum number of thermocouples (TC), with minor differences compared to experimental data. Four experimental tests (two types of inlet and two water flow rates) were conducted in a 950 L capacity tank. For each experimental test (with 12 TC), four models were developed using a decreasing number of TC (7, 4, 3 and 2, respectively). The results of the estimation of water temperature obtained with each of the four models were compared with those of a fifth model performed with 12 TC. All models were tested for constant inlet temperature. Very acceptable results were achieved (RMSE between 0.2065 °C and 0.8706 °C in models with 3 TC). The models were also useful to estimate the water temperature profile and the evolution of thermocline thickness even with only 3 TC (RMSE between 0.00247 °C and 0.00292 °C). A comparison with a CFD model was carried out to complete the study with very small differences between both approaches when applied to the estimation of the instantaneous temperature profile. The proposed methodology has proven to be very effective in estimating several of the temperature-based indices commonly employed to evaluate thermal stratification in water storage tanks, with only two or three experimental temperature data measurements. It can also be used as a complementary tool to other techniques such as the validation of numerical simulations or in cases where only a few experimental temperature values are available.


Sign in / Sign up

Export Citation Format

Share Document