CPSM Simulation of the Variable Properties’ Role in MHD Non-Newtonian Micropolar Nanofluid Flow Over a Stretching Porous Sheet (Flow Filtration)

Author(s):  
Nasser S. Elgazery
2020 ◽  
Vol 46 (1) ◽  
pp. 645-662 ◽  
Author(s):  
Saeed Ehsan Awan ◽  
Muhammad Asif Zahoor Raja ◽  
Faiza Gul ◽  
Zuhaib Ashfaq Khan ◽  
Ammara Mehmood ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 379 ◽  
Author(s):  
Waqar A. Khan ◽  
A.M. Rashad ◽  
S.M.M. EL-Kabeir ◽  
A.M.A. EL-Hakiem

Recently, nanoparticles have supplied diverse challenges in the area of science. The nanoparticles suspended in several conventional fluids can convert the fluids flow and heat transmission features. In this investigation, the mathematical approach is utilized to explore the magnetohydrodynamics micropolar-nanofluid flow through a truncated porous cone. In this mathematical model, non-linear radiation and suction/injection phenomena are also scrutinized with the Tiwari-Das nanoliquid pattern. The designed system of the mathematical model of the boundary value problem is converted to a set of dimensionless non-similar equations applying convenient transformations. In this study, kerosene oil is selected as the base fluid, while the nanoparticles of Fe3O4 are utilized to promote the heat transmission rate. The problem is solved numerically using the Runge-Kutta-Fehlberg method (RKF45). It is demonstrated that an enhancement in the pertinent parameters improves the heat transmission rate.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Zahir Shah ◽  
Saeed Islam ◽  
Hamza Ayaz ◽  
Saima Khan

The present research aims to examine the micropolar nanofluid flow of Casson fluid between two parallel plates in a rotating system with effects of thermal radiation. The influence of Hall current on the micropolar nanofluids have been taken into account. The fundamental leading equations are transformed to a system of nonlinear differential equations using appropriate similarity variables. An optimal and numerical tactic is used to get the solution of the problem. The convergence and comparison have been shown numerically. The impact of the Hall current, Brownian movement, and thermophoresis phenomena of Casson nanofluid have been mostly concentrated in this investigation. It is found that amassed Hall impact decreases the operative conductivity which intends to increase the velocity field. The temperature field enhances with larger values of Brownian motion thermophoresis effect. The impacts of the Skin friction coefficient, heat flux, and mass flux have been deliberate. The skin friction coefficient is observed to be larger for k=0, as compared to the case of k=0.5. Furthermore, for conception and visual demonstration, the embedded parameters have been deliberated graphically.


2020 ◽  
Vol 32 (6) ◽  
pp. 2741-2751 ◽  
Author(s):  
Iskander Tlili ◽  
Muhammad Ramzan ◽  
Habib Un Nisa ◽  
Meshal Shutaywi ◽  
Zahir Shah ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4191 ◽  
Author(s):  
Khuram Rafique ◽  
Muhammad Imran Anwar ◽  
Masnita Misiran ◽  
Ilyas Khan ◽  
Asiful H. Seikh ◽  
...  

The principal objective of the current study is to analyze the Brownian motion and thermophoretic impacts on micropolar nanofluid flow over a nonlinear inclined stretching sheet taking into account the Soret and Dufour effects. The compatible similarity transformations are applied to obtain the nonlinear ordinary differential equations from the partial differential equations. The numerical solution of the present study obtained via the Keller-Box technique. The physical quantities of interest are skin friction, Sherwood number, and heat exchange, along with several influences of material parameters on the momentum, temperature, and concentration are elucidated and clarified with diagrams. A decent settlement can be established in the current results with previously published work in the deficiency of incorporating effects. It is found that the growth of the inclination and nonlinear stretching factor decreases the velocity profile. Moreover, the growth of the Soret effect reduces the heat flux rate and wall shear stress.


Sign in / Sign up

Export Citation Format

Share Document