Biocrude oil and high-value metabolite production potential of the Nitzschia sp.

Author(s):  
Sara Al-Naimi ◽  
Abdulrahman Al-Muftah ◽  
Probir Das ◽  
Shoyeb Khan ◽  
Mohammed AbdulQuadir ◽  
...  
Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 332
Author(s):  
Dini Hu ◽  
Simon Ming-Yuen Lee ◽  
Kai Li ◽  
Kai Meng Mok

Mangroves are intertidal extreme environments with rich microbial communities. Actinobacteria are well known for producing antibiotics. The search for biosynthetic potential of Actinobacteria from mangrove environments could provide more possibilities for useful secondary metabolites. In this study, whole genome sequencing and MS/MS analysis were used to explore the secondary metabolite production potential of one actinobacterial strain of Streptomyces olivaceus sp., isolated from a mangrove in Macau, China. The results showed that a total of 105 gene clusters were found in the genome of S. olivaceus sp., and 53 known secondary metabolites, including bioactive compounds, peptides, and other products, were predicted by genome mining. There were 28 secondary metabolites classified as antibiotics, which were not previously known from S. olivaceus. ISP medium 2 was then used to ferment the S. olivaceus sp. to determine which predicted secondary metabolite could be truly produced. The chemical analysis revealed that ectoine, melanin, and the antibiotic of validamycin A could be observed in the fermentation broth. This was the first observation that these three compounds can be produced by a strain of S. olivaceus. Therefore, it can be concluded that Actinobacteria isolated from the mangrove environment have unknown potential to produce bioactive secondary metabolites.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Heiko T. Kiesewalter ◽  
Carlos N. Lozano-Andrade ◽  
Gergely Maróti ◽  
Dan Snyder ◽  
Vaughn S. Cooper ◽  
...  

Bacillus subtilis is a plant-benefiting soil-dwelling Gram-positive bacterium with secondary metabolite production potential. Here, we report the complete genome sequences of 13 B. subtilis strains isolated from different soil samples in Germany and Denmark.


1993 ◽  
Vol 89 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Douglas G. Muench ◽  
O. William Archibold ◽  
Allen G. Good

Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
A Azzollini ◽  
JL Wolfender ◽  
K Gindro

2019 ◽  
Author(s):  
Wan-Ting (Grace) Chen ◽  
Zhenwei Wu ◽  
Buchun Si ◽  
Yuanhui Zhang

This study aims to produce renewable diesel and biopriviliged chemicals from microalgae that can thrive in wastewater environment. <i>Spirulina</i> (SP) was converted into biocrude oil at 300ºC for a 30-minute reaction time via hydrothermal liquefaction (HTL). Next, fractional distillation was used to separate SP-derived biocrude oil into different distillates. It was found that 62% of the viscous SP-derived biocrude oil can be separated into liquids at about 270ºC (steam temperature of the distillation). Physicochemical characterizations, including density, viscosity, acidity, elemental compositions, higher heating values and chemical compositions, were carried out with the distillates separated from SP-derived biocrude oil. These analyses showed that 15% distillates could be used as renewable diesel because they have similar heating values (43-46 MJ/kg) and carbon numbers (ranging from C8 to C18) to petroleum diesel. The Van Krevelan diagram of the distillates suggests that deoxygenation was effectively achieved by fractional distillation. In addition, GC-MS analysis indicates that some distillates contain biopriviliged chemicals like aromatics, phenols and fatty nitriles that can be used as commodity chemicals. An algal biorefinery roadmap was proposed based on the analyses of different distillates from the SP-derived biocrude oil. Finally, the fuel specification analysis was conducted with the drop-in renewable diesel, which was prepared with 10 vol.% (HTL10) distillates and 90 vol.% petroleum diesel. According to the fuel specification analysis, HTL10 exhibited a qualified lubricity (<520 µm), acidity (<0.3 mg KOH/g) and oxidation stability (>6 hr), as well as a comparable net heat of combustion (1% lower), ash content (29% lower) and viscosity (17% lower) to those of petroleum diesel. Ultimately, it is expected that this study can provide insights for potential application of algal biocrude oil converted via HTL.


2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Firman L. Sahwan

Organic materials that are generally used as raw material for organic fertilizer granules (POG) is a natural organic material that has been degrade, smooth and dry. One of the main raw materials are always used with a very high percentage of usage, is manure. Manure potential in Indonesia is very high, amounting to 113.6 million tons per year, or 64.7 million tons per year to the island of Java. From this amount, it will be generated numbers POG production potential of 17.5 million tons per year (total Indonesia) or 9.9 million tons per year for the island of Java. While the realistic POG production predictions figures made from raw manure is 2.5 million tons annually, a figure that has been unable to meet the number requirement of POG greater than 4 million tons per year. Therefore, in producing POG, it should be to maximize the using of the potential of other organic materials so that the use of manure can be saved. With the use of a small amount of manure (maximum 30% for cow manure), it would be useful also to avoid the production of POG with high Fe content.keywods: organic material, manure, granule organic fertilizer


Sign in / Sign up

Export Citation Format

Share Document