Cotton Production Potential and Water Conservation Impact Using the Regional Irrigation Demand Model of Northern Texas

Author(s):  
Thomas Marek ◽  
Dana Porter ◽  
Terry Howell ◽  
Prasanna Gowda ◽  
Paul Colaizzi ◽  
...  
2015 ◽  
Vol 71 (4) ◽  
pp. 529-537 ◽  
Author(s):  
R. C. Sarker ◽  
S. Gato-Trinidad

The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption.


Agriculture ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 39 ◽  
Author(s):  
Blessing Masasi ◽  
Saleh Taghvaeian ◽  
Randy Boman ◽  
Sumon Datta

Optimization of cotton irrigation termination (IT) can lead to more efficient utilization and conservation of limited water resources in many cotton production areas across the U.S. This study evaluated the effects of three IT timings on yield, fiber quality, and irrigation requirements of irrigated cotton in southwest Oklahoma during three growing seasons. The results showed cotton yield increased with later IT dates, but this response was highly dependent on the amount and timing of late-season precipitation events. Only a few fiber quality parameters were significantly different among treatments, suggesting a more limited impact of IT on fiber quality. When averaged over the three study years, the lint yield was significantly different amongst all treatments, with an average increase of 347 kg ha−1 from the earliest to the latest IT. Additionally, the seed yield and the micronaire were similar for the two earlier IT treatments and significantly smaller than the values under the latest IT treatment. The differences in fiber uniformity and strength were also significant amongst IT treatments. Strong positive relationships were found between yield components and average late-season water content in the root zone. Lint and seed yields plateaued at an average late-season soil matric potential of about −30 kPa and had a quadratic decline as soil moisture depleted. When benchmarked against the latest IT treatment, the earlier IT treatments achieved average reductions of 16–28% in irrigation requirement. However, this water conservation was accompanied with considerable declines in yield components and micronaire and smaller declines in fiber length, uniformity, and strength.


1989 ◽  
Vol 3 (2) ◽  
pp. 155-163 ◽  
Author(s):  
B. S. Piper ◽  
C. Chawalit ◽  
V. Pantheep

Author(s):  
Rashid Iqbal ◽  
Muhammad Habib-ur-Rahman ◽  
Muhammad Aown Sammar Raza ◽  
Muhammad Waqas ◽  
Rao Muhammad Ikram ◽  
...  

AbstractWater scarcity constrains global cotton production. However, partial root-zone drying (PRD) and mulching can be used as good techniques to save water and enhance crop production, especially in arid regions. This study aimed to evaluate the effects of mulching for water conservation in an arid environment under PRD and to further assess the osmotic adjustment and enzymatic activities for sustainable cotton production. The study was carried out for 2 years in field conditions using mulches (NM = no mulch, BPM = black plastic mulch at 32 kg ha-1, WSM = wheat straw mulch at 3 tons ha-1, CSM = cotton sticks mulch at 10 tons ha-1) and two irrigation levels (FI = full irrigation and PRD (50% less water than FI). High seed cotton yield (SCY) achieved in FI+WSM (4457 and 4248 kg ha-1 in 2017 and 2018, respectively) and even in PRD+WSM followed by BPM>CSM>NM under FI and PRD for both years. The higher SCY and traits observed in FI+WSM and PRD+WSM compared with the others were attributed to the improved water use efficiency and gaseous exchange traits, increased hormone production (ABA), osmolyte accumulation, and enhanced antioxidants to scavenge the excess reactive oxygen. Furthermore, better cotton quality traits were also observed under WSM either with FI or PRD irrigation regimes. Mulches applications found effective to control the weeds in the order as BPM>WSM>CSM. In general, PRD can be used as an effective stratagem to save moisture along with WSM, which ultimately can improve cotton yield in the water-scarce regions under arid climatic regions. It may prove as a good adaptation strategy under current and future water shortage scenarios of climate change.


EDIS ◽  
2017 ◽  
Vol 2017 (2) ◽  
pp. 8
Author(s):  
Zane Grabau

This 8-page fact sheet written by Zane J. Grabau and published in January 2017 by the UF Department of Entomology and Nematology explains how to diagnose and manage nematode problems in cotton production.­http://edis.ifas.ufl.edu/ng015


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Zulkifli Aiyub Kadir ◽  
Bahagia Bahagia

<p>Humans have utilized landscape for  produces a diverse character of the wider area of the watershed. Agroforestry is a land management system in addressing the problems that arise due to changes in land use of soil and water conservation. The aim of the study was to analyze plant diversity in agroforestry practices that have services in the Krueng watershed landscape in Aceh watershed. Develop strategies in the Krueng Aceh DAS agroforestry service. This research was conducted in the upper, middle and downstream of the Krueng Aceh watershed, with a rapid method of Agro-Biodiversity Appraisal and SWOT. The results showed that the composition of the vegetation structure found in the study sites tended to vary with the diversity index of agroforestry that was currently in the upstream and middle of the Krueng Aceh watershed. Based on SWOT analysis, internal scores are 2.45 and external scores are 3.21. Agroforestry practices in the upper stream of Krueng Aceh watershed were dominated by <em>Aleurites moluccana</em>, <em>Areca cathecu</em>, and  <em>Averrhoa bilimbi</em> L  species with the highest INP in the upper stream of Krueng Aceh watershed. Vegetation at the middle stream of Krueng Aceh watershed dominated by <em>Areca cathecu,</em> <em>Lansium domesticum</em> and Musa<em> paradisiaca</em>.  </p>


2020 ◽  
Vol 9 (4) ◽  
pp. e04942784
Author(s):  
Andrea Aline Mombach ◽  
Carla Grasiele Zanin Hegel ◽  
Rogério Luis Cansian ◽  
Sônia Beatris Balvedi Zakrzevski

The perception of a basic education of the importance of agroecological agricultural systems for human and environmental health is fundamental for changes in consumption habits, the conservation of local biodiversity and long-term social transformation. We analyzed, by utilizing a questionnaire consisting of open and closed questions, the perceptions about agroecological and conventional agricultural production systems in 360 final students of basic education residing in nine Functional Planning Regions of southern Brazil. We used classification categories for answers within thematic axes, expressed in percentages and analyzed by means of Chi-square and Kruskal-Wallis tests. In general, students recognize agroecological systems as healthier for their families and for soil and water conservation, largely because they do not use agrochemicals. However, they demonstrated difficulties when arguing their importance for the conservation of biodiversity, ecosystems and for ensuring the food security of populations. Television was the main source of information related to agroecology, mainly for students residing in rural areas, thus pointing out shortcomings in basic education regarding the approach of the theme in schools. Our results show the need to build a complex network of knowledge and discussions on agroecological agricultural systems in basic education, involving changes in student perceptions, behaviors and sustainable choices.


Sign in / Sign up

Export Citation Format

Share Document