The kinetic studies of the cobalt ion removal from aqueous solutions by dolomite-based sorbent

2016 ◽  
Vol 13 (11) ◽  
pp. 2561-2568 ◽  
Author(s):  
A. I. Ivanets ◽  
I. L. Shashkova ◽  
N. V. Kitikova ◽  
Y. Morozov
2017 ◽  
Author(s):  
Mark Tristan J. Quimque ◽  
Marvin C. Jimenez ◽  
Meg Ina S. Acas ◽  
Danrelle Keth L. Indoc ◽  
Enjelyn C. Gomez ◽  
...  

2015 ◽  
Vol 72 (3) ◽  
pp. 478-483 ◽  
Author(s):  
Yunleiyu Guo ◽  
Tingting Shen ◽  
Chen Wang ◽  
Jing Sun ◽  
Xikui Wang

The removal of caffeine (CAF) in aqueous solution by peroxymonosulfate oxidant activated with cobalt ion was investigated under a variety of operating conditions. The effects of various operating parameters, such as oxone and Co2+ concentrations, pH value, and the coexistence of dissolved organic matter and inorganic anions on the removal of CAF have been investigated. The removal efficiency increased with the increase in the concentrations of oxone and Co2+ ion added. The additions of chloride, bicarbonate, and sodium humate have negative effects on the removal of CAF. Near-neutral condition (5.0 < pH < 7.0) is favorable for the removal of CAF. Based on our experiments, 100% degradation of 50 mg/L CAF can be achieved within 4 minutes under the conditions of 1.00 mM oxone and 0.10 mM Co2+ ion at pH 5.0–7.0.


2018 ◽  
Vol 3 (1) ◽  
pp. 4 ◽  
Author(s):  
Liudmyla Soldatkina ◽  
Marianna Zavrichko

Corn stalks (CS) were modified by a cationic surfactant, cetylpyridinium bromide (CPB), and used as an adsorbent (CS-CP) to remove anionic dyes [Acid Red (AR) and Acid Orange (AO)] from aqueous solutions. The FTIR analysis and the obtained calculations based on the determination of the adsorption capacity of CS towards CPB confirmed that the cationic surfactant had been adsorbed on the surface of corn stalks. Adsorption of the anionic dyes on modified corn stalks was investigated in a series of batch adsorption experiments at 303–328 K. The adsorption data were analyzed using Langmuir, Freundlich, and Temkin models. The Langmuir model was found to be more suitable for the experimental data of the anionic dyes on CS-CP than other adsorption models. Kinetic studies revealed that the pseudo-second order model showed the best fit to the experimental data. The thermodynamic parameters indicated that the adsorption process was spontaneous and exothermic. Mechanisms involving ion exchange and chemisorption might be responsible for the uptake of the anionic dyes on CS-CP. Obtained results imply that CS-CP could be applied as an effective adsorbent to remove anionic dyes from aqueous solutions.


2019 ◽  
Vol 79 (6) ◽  
pp. 1214-1221 ◽  
Author(s):  
Dian Arrisujaya ◽  
Nina Ariesta ◽  
Mamay Maslahat

Diospyros discolor seed activated with nitric acid was investigated for removing Cr(VI) from aqueous solutions. Batch experiments were used to determine the adsorption efficiency, effect of pH, adsorption isotherm, and kinetics. Langmuir and Freundlich adsorption models were used to analyze data of Cr(VI) uptake. Fourier transform infrared spectroscopy was used to investigate the functional groups and surface morphology was checked using a scanning electron microscope, coupled with energy dispersive spectroscopy. The optimum pH in Cr(VI) uptake was 3.5 and the maximum adsorption efficiency reached 100% at 60 min.


Sign in / Sign up

Export Citation Format

Share Document